화학공학소재연구정보센터
Bioresource Technology, Vol.101, No.16, 6374-6380, 2010
Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system
This research was conducted to develop an integrated rotary drum reactor (RDR)-anaerobic-phased solids (APS) digester system for the treatment of municipal solid waste (MSW) to produce biogas energy and achieve waste reduction. A commercial RDR facility was used to provide a 3-d pretreatment and sufficient separation of the organics from MSW and then the organics were digested in a laboratory APS-digester system for biogas production. The organics generated from the RDR contained 50% total solids (TS) and 36% volatile solids (VS) on wet basis. The APS-digester was started at an organic loading rate (OLR) of 3.1 gVS L(-1) d(-1) and operated at three higher OLRs of 4.6, 7.7 and 9.2 gVS L(-1) d(-1). At the OLR of 9.2 gVS L(-1) d(-1) the system biogas production rate was 3.5 LL(-1) d(-1) and the biogas and methane yields were 0.38 and 0.19 LgVS(-1), respectively. Anaerobic digestion resulted in 38% TS reduction and 53% VS reduction in the organic solids. It was found that the total VFA concentration reached a peak value of 15,000 mg L(-1) as acetic acid in the first 3d of batch digestion and later decreased to about 500 mg L(-1). The APS-digester system remained stable at each OLRs for over 100 d with the pH in the hydrolysis reactors in the range of 7.3-7.8 and the pH in the biogasification reactor in 7.9-8.1. The residual solids after the digestion had a high heating value of 14.7 kJ gTS(-1). (C) 2010 Elsevier Ltd. All rights reserved.