화학공학소재연구정보센터
Bioresource Technology, Vol.102, No.3, 2702-2711, 2011
Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160
Hexose and pentose sugars from phosphoric acid pretreated sugarcane bagasse were co-fermented to ethanol in a single vessel (SScF), eliminating process steps for solid-liquid separation and sugar cleanup. An initial liquefaction step (L) with cellulase was included to improve mixing and saccharification (L + SScF), analogous to a corn ethanol process. Fermentation was enabled by the development of a hydrolysate-resistant mutant of Escherichia coli LY180, designated MM160. Strain MM160 was more resistant than the parent to inhibitors (furfural, 5-hydroxymethylfurfural, and acetate) formed during pretreatment. Bagasse slurries containing 10% and 14% dry weight (fiber plus solubles) were tested using pretreatment temperatures of 160-190 degrees C (1% phosphoric acid, 10 min). Enzymatic saccharification and inhibitor production both increased with pretreatment temperature. The highest titer (30 g/L ethanol) and yield (0.21 g ethanol/g bagasse dry weight) were obtained after incubation for 122 h using 14% dry weight slurries of pretreated bagasse (180 degrees C). (C) 2010 Elsevier Ltd. All rights reserved.