Bioresource Technology, Vol.102, No.3, 3584-3586, 2011
Enhancing aspergiolide A production from a shear-sensitive and easy-foaming marine-derived filamentous fungus Aspergillus glaucus by oxygen carrier addition and impeller combination in a bioreactor
Production enhancement of a novel antitumor compound aspergiolide A from shear-sensitive and easy-foaming marine-derived fungus Aspergillus glaucus HB1-19 in a 5-l stirred bioreactor was investigated. Two types of impellers. i.e., six-flat-blade disc turbine impeller (DT) and three-sector-blade pitched blade turbine impeller (PB) were used in this work. In cultures with fermentation medium, the combination of upper PB and lower DT led to the maximum dry biomass (13.8 g/l) and aspergiolide A production (19.3 mg/l). However, two PBs brought the highest aspergiolide A yield coefficient (1.9 mg/g dry biomass) despite it produced the lowest dry biomass (5.3 g/l). By contrast, two DTs and the upper DT and lower PB showed insignificant results. Feeding 0.35% (v/v) n-dodecane in cultures with upper PB and lower DT further improved aspergiolide A production by 31.0%, i.e., 25.3 mg/l, which is also 322% higher than that in the ordinary cultures with two DTs. (C) 2010 Elsevier Ltd. All rights reserved.