화학공학소재연구정보센터
Bioresource Technology, Vol.102, No.13, 6837-6842, 2011
A bioelectrochemical reactor containing carbon fiber textiles enables efficient methane fermentation from garbage slurry
A packed-bed system includes supporting materials to retain microorganisms and a bioelectrochemical system influences the microbial metabolism. In our study, carbon fiber textiles (CFT) as a supporting material was attached onto a carbon working electrode in a bioelectrochemical reactor (BER) that degrades garbage slurry to methane, in order to investigate the effect of combining electrochemical regulation and packing CFT. The potential on the working electrode in the BER containing CFT was set to -1.0 V or -0.8 V (vs. Ag/AgCl). BERs containing CFT exhibited higher methane production, elimination of dichromate chemical oxygen demand, and the ratio of methanogens in the suspended fraction than reactors containing CFT without electrochemical regulation at an organic loading rate (OLR) of 27.8 gCODcr/L/day. In addition, BERs containing CFT exhibited higher reactor performances than BERs without CFT at this OLR. Our results revealed that the new design that combined electrochemical regulation and packing CFT was effective. (C) 2011 Elsevier Ltd. All rights reserved.