화학공학소재연구정보센터
Catalysis Today, Vol.175, No.1, 435-441, 2011
Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts
The etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol is studied over a series of mesoporous silica catalysts (Al-MCM-41 materials with different Si/Al ratio, and zirconia or sulfated zirconia supported over SBA-15) and compared with the behavior of H(2)SO(4) and Amberlyst (R) 15. The observed reaction products were 5-(ethoxymethyl)furan-2-carbaldehyde (EMF), 1,1-dietoxy ethane (DE) and ethyl 4-oxopentanoate (EOP). The selectivity to EMF and EOP is closely related to the presence of Lewis and/or Bronsted acidity on the catalyst, while the formation of DE is probably related to defect sites. The latter, being less reactive, catalyze the side reaction to DE only when strong Lewis and/or Bronsted acid sites are absent. Catalysts with only a strong Bronsted acidity react selectively to form EOP. When strong Lewis acid sites are present in the catalyst, e.g. by introducing ZrO(2) in SBA-15 or when extra-framework isolated AI(3+) sites are present in the mesoporous channels, a high selectivity to EMF was observed. The results indicate that EMF, DE or EOP can be obtained selectively by direct reaction of HMF with bioethanol by tuning the acidity of the catalyst. EMF is a value biodiesel component, but the results also evidence the possibility to obtain selectively EOP in a one-step reaction, opening interesting perspectives to produce valeric biofuels by subsequent selective hydrogenation. (C) 2011 Elsevier B.V. All rights reserved.