화학공학소재연구정보센터
Journal of Adhesion, Vol.52, No.1, 187-207, 1995
The effect of sodium ions on the stability of the interphase region of glass fibre reinforced composites
The single embedded filament fragmentation and the short beam shear strength tests together with angle-resolved X-ray Photoelectron Spectroscopy (XPS) have been used to investigate the interfacial region of vinyl ester composites reinforced with sized AR-glass fibres, with and without amino and vinyl functional adhesion promoters. The gamma-aminopropyltriethoxysilane (APS) deposit on AR-glass is susceptible to a thermal degradation during post-cure, which has been attributed to a base catalysed equilibration of the siloxane bonds. The functional groups of APS required for resin compatibility were buried beneath the surface layers, contributing to a low bond strength, furthermore, mobile sodium ions existed within the interfacial region. Aqueous extraction prior to fabrication enhanced the composite bond strength by removing the soluble silane oligomers, the sodium ions, and exposing the organo-functional groups for co-reaction with the matrix. The silane deposit on AR-glass is made hygroscopic by the presence of sodium ions. This increased the equilibrium moisture content of AR-glass composites, and diminished their retained short beam shear strength in contrast to the E-glass control which retained its properties after redrying.