Fuel, Vol.85, No.17-18, 2622-2631, 2006
Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection
This article investigates the auto-ignition, combustion, and emission characteristics of homogeneous charge compression ignition (HCCI) combustion engines fuelled with n-heptane and ethanol/n-heptane blend fuels. The experiments were conducted on a single-cylinder HCCI engine using neat n-heptane, and 10%, 20%, 30%, 40%, and 50% ethanol/n-heptane blend fuels (by volume) at a fixed engine speed of 1800 r/min. The results show that, with the introduction of ethanol in n-heptane, the maximum indicated mean effective pressure (IMEP) can be expanded from 3.38 bar of neat n-heptane to 5.1 bar, the indicated thermal efficiency can also be increased up, to 50% at large engine loads, but the thermal efficiency deteriorated at light engine load. Due to the much higher octane number of ethanol, the cool-flame reaction delays, the initial temperature corresponding the cool-flame reaction increases, and the peak value of the low-temperature heat release decreases with the increase of ethanol addition in the blend fuels. Furthermore, the low-temperature heat release is indiscernible when the ethanol volume increases up to 50%. In the case of the neat n-heptane and 10% ethanol/n-heptane blends, the combustion duration is very short due to the early ignition timing. For 20-50% ethanol/n-heptane blend fuels, the ignition timing is gradually delayed to the top dead center (TDC) by the ethanol addition. As a result, the combustion duration prolongs obviously at the same engine load when compared to the neat n-heptane fuel. At overall stable operation ranges, the HC emissions for n-heptane and 10-30% ethanol/n-heptane blends are very low, while HC emissions increase substantially for 40% and 50% ethanol/n-heptane blends. CO emissions show another tendency compared to HC emissions. At the engine load of 1.5-2.5 bar, CO emissions are very high for all fuels. Beside this range, CO emissions decrease both for large load and light load. In terms of operation stability of HCCI combustion, for a constant energy input, n-heptane shows an excellent repeatability and light cycle-to-cycle variation, while the cycle-to-cycle variation of the maximum combustion pressure and its corresponding crank angle, and ignition timing deteriorated with the increase of ethanol addition. (c) 2006 Elsevier Ltd. All rights reserved.