Fuel, Vol.95, No.1, 226-233, 2012
Effects of initial droplet diameter and pressure on burning of ATF gel propellant droplets
The increasing demand for higher energy density fuels and the ever-increasing concern for their safety have propelled research in the field of gel propellants. For studying the fundamental parameters without the interference of neighbouring droplets, isolated droplet burning of organic ATF (aviation turbine fuel) gel propellants was chosen to investigate experimentally the effects of initial droplet diameter and chamber pressure on the burning under normal gravity conditions at room temperature. Under ambient pressure condition, an increase in the burning rate constant was observed with increase in initial droplet diameter. For a given range of diameters, the burning rate constant also continued to increase with pressure. Experiments were also carried out to study how these variations were affected by initial droplet diameter and chamber pressure changes, respectively. The intensity of microexplosions was observed to decrease with increase in chamber pressure. A balance between the heat loss by the droplet to the surroundings and the heat gain by the droplet has been put forward to explain the variations of burning rate constant with varying pressures as well as varying initial droplet diameters. (C) 2011 Elsevier Ltd. All rights reserved.