화학공학소재연구정보센터
Heat Transfer Engineering, Vol.33, No.4-5, 301-341, 2012
Dropwise Condensation Studies on Multiple Scales
Recent advances in nanotechnology, chemical/physical texturing and thin film coating technology generate definite possibilities for sustaining a dropwise mode of condensation for much longer durations than was previously possible. The availability of superior experimental techniques also leads to deeper understanding of the process parameters controlling the relevant transport phenomena, the distinguishing feature of which is the involvement of a hierarchy of length/time scales, proceeding from nuclei formation, to clusters, all the way to macroscopic droplet ensemble, drop coalescence, and subsequent dynamics. This paper is an attempt to connect and present a holistic framework of modeling and studying dropwise condensation at these multiple scales. After a review of the literature, discussions on the following problems are presented: (i) atomistic modeling of nucleation; (ii) droplet-substrate interaction; (iii) surface preparation; (iv) simulation of fluid motion inside sliding drops; (v) experimental determination of the local/average heat transfer coefficient; and (vi) a macroscopic model of the complete dropwise condensation process underneath horizontal and inclined surfaces. The study indicates that hierarchal modeling is indeed the way forward to capture the complete process dynamics. The microscopic phenomena at the three-phase contact line, leading to the apparent droplet contact angle, influence the shear stress and heat transfer. The nucleation theory captures the quasi-steady-state behavior quite satisfactorily, although the early atomistic nucleation was not seen to have a profound bearing on the steady-state behavior. The latter is strongly governed by the coalescence dynamics. Visual observation of dropwise condensation provides important information for building hierarchical models.