Journal of Adhesion Science and Technology, Vol.9, No.5, 575-598, 1995
THE IMPROVEMENT IN ADHESION OF POLYURETHANE-POLYPROPYLENE COMPOSITES BY SHORT-TIME EXPOSURE OF POLYPROPYLENE TO LOW AND ATMOSPHERIC-PRESSURE PLASMAS
The surfaces of polymers, namely polypropylene, copolymers and blends, were exposed to low pressure oxygen and atmospheric pressure air plasmas to improve their adhesion to polyurethane adhesives. A correlation is attempted between lap shear strengths of polypropylene-polyurethane composites and the relevant XPS, AFM and NEXAFS data. It was found that plasma functionalization improved the adhesion to maximum values even when the time of exposure was low: 1 to 10 seconds for low pressure plasmas, and 0.1 to 1 seconds in case of atmospheric plasma jet treatments. Thus, high lap shear strengths were obtained at relatively small oxygen contents. The improvement in shear strength at short time plasma exposures seems to be correlated to the complete smoothening of the supermolecular structure oi stretched polypropylene foils as shown by AFM. Valence band XPS and derivatization techniques revealed more details of the oxygen functionalization on polypropylene. NEXAFS experiments confirmed a re-orientation of bonds and segments of the macromolecules by plasma exposure which are assumed to be responsible for adhesion improvement.
Keywords:VALENCE