초록 |
Hole transporting materials (HTMs) play a significant role in enhancing the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). Here, we present a new class of HTM with pyridine as a central core with an extended π-conjugated molecular structure with electron-donating blocks. We have systematically investigated its photophysical, thermal, electrochemical, and charge transport properties and found that 4,4'-(5,5'-(pyridine-2,6-diylbis(4,1-phenylene))bis(thiophene-5,2-diyl))bis(N,N-bis(4-methoxyphenyl)aniline) (PyThTPA) is a potential HTM candidate for making PSCs. The PyThTPA HTM-based PSC attained an average PCE of 16.57% with outstanding long-term durability of over 720 hrs with minimal reduction of its initial PCE and negligible hysteresis. This PSC performance was 34% higher than that of the state-of-the-art HTM, Spiro-OMeTAD with tris(pentafluorophenyl)borane (BCF). |