초록 |
There are rising demands for developing more efficient energy materials to stem the depletion of fossil fuels, which have prompted significant research efforts on proton exchange fuel cells (PEFCs) and lithium ion batteries (LIBs). To date, both PEFCs and LIBs are being widely developed to power small electronics, however, their utilization to medium-large sized electric power resources such as vehicle and stationary energy storage systems still appears distant. These technologies increasingly rely upon polymer electrolyte membranes (PEMs) that transport ions from the anode to the cathode to balance the flow of electrons in an external circuit, and therefore play a central role in determining the efficiency of the devices; as ion transport is a kinetic bottleneck compared to electrical conductivity, enormous efforts have been devoted to improving the transport properties of PEMs. In present study, we carried out an in-depth analysis of the morphology effects on transport properties of PEMs. How parameters such as self-assembled nanostructures, domain sizes, and domain orientations affect conductivities of PEMs will be presented. |