1 |
Fabrication of layered Fe2P-Cd0.5Zn0.5 S nanoparticles with a reverse heterojunction for enhanced photocatalytic hydrogen evolution Liang ZB, Dong XF Journal of Colloid and Interface Science, 583, 196, 2021 |
2 |
Facile in-situ growth of Ni2P/Fe2P nanohybrids on Ni foam for highly efficient urea electrolysis Yan L, Sun YL, Hu EL, Ning JQ, Zhong YJ, Zhang ZY, Hu Y Journal of Colloid and Interface Science, 541, 279, 2019 |
3 |
Fe2P nanoparticles as highly efficient freestanding co-catalyst for photocatalytic hydrogen evolution Pan ZW, Wang R, Li JN, Iqbal S, Liu W, Zhou KB International Journal of Hydrogen Energy, 43(10), 5337, 2018 |
4 |
Phase transformation of iron phosphide nanoparticles for hydrogen evolution reaction electrocatalysis Cho G, Kim H, Park YS, Hong YK, Ha DH International Journal of Hydrogen Energy, 43(24), 11326, 2018 |
5 |
Nanoscale engineering MoP/Fe2P/RGO toward efficient electrocatalyst for hydrogen evolution reaction Wang KW, Tan JS, Lu ZJ, Chen S, She XL, Zhang HW, Yang DJ International Journal of Hydrogen Energy, 43(30), 13939, 2018 |
6 |
Structural and multifunctional properties of magnetron-sputtered Fe-P(-Mn) thin films Decker P, Stein HS, Salomon S, Brussing F, Savan A, Hamann S, Ludwig A Thin Solid Films, 603, 262, 2016 |
7 |
LiFePO4-Fe2P-C composite cathode: An environmentally friendly promising electrode material for lithium-ion battery Rahman MM, Wang JZ, Zeng R, Wexler D, Liu HK Journal of Power Sources, 206, 259, 2012 |
8 |
A novel synthesis of Fe2P-LiFePO4 composites for Li-ion batteries Liu YY, Cao CB, Li J, Xu XY Journal of Applied Electrochemistry, 40(2), 419, 2010 |
9 |
Reaction mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbothermal method Yu F, Zhang JJ, Yang YF, Song GZ Electrochimica Acta, 54(28), 7389, 2009 |
10 |
Electrochemical properties of LiFe0.9Mn0.1PO4/Fe2P cathode material by mechanical alloying Lee KT, Lee KS Journal of Power Sources, 189(1), 435, 2009 |