화학공학소재연구정보센터
Macromolecular Research, Vol.20, No.11, 1137-1143, November, 2012
Preparation and Characterization of Oxygen Generating (OG) Hydrogels Using γ-Ray Irradiation Crosslinking
E-mail:
Oxygen generating (OG) hydrogels immobilizing glucose oxidase (GOx, EC 1.1.3.4) and peroxidase (PO) (EC 1.11.1.7) were prepared using a γ -ray irradiation polymerization technique, and the properties were examined. In physiological tests of the OG hydrogels ranging from 15 to 70 kGy, GOx or PO showed higher gel contents at 87% for the poly(vinyl alcohol) (PVA) hydrogel and 90% for the poly(vinylpyrrolidone) (PVP) hydrogel. The optimal irradiation conditions affecting the entrapment ratio for preparing the OG hydrogel was 35 kGy for the PVP hydrogel, and both enzymes (GOx, 95% and PO, 89%). Optimal GOx and PO activity of the prepared OG hydrogel occurred at pH 6.0 and 35 ℃, and both enzymes showed stable activity under acidic conditions. The optimal glucose condition was 4 mg, which resulted in a maximum oxygen generating yield by the OG hydrogels. When oxygen concentration was compared, the OG hydrogels showed higher oxygen pressure than that of control hydrogels without the GOx and PO enzymes. Moreover, the OG hydrogel continuously converted potassium iodide to iodine in a glucose dosage and time dependant manner for 15 h, producing approximately 0.1 M iodine in 5 h.
  1. Wild S, Roglic G, Green A, Sicree R, King H, Diabetes, 27, 1047 (2004)
  2. Reiber GE, Boyko EJ, Smith DG, in Diabetes in America, Bethesda, Maryland, 409 (1995)
  3. Pecoraro RE, Reiber GE, Burgess EM, Diabetes Care., 13, 513 (1990)
  4. Diabetes Care., American Diabetes Association, 22, 1354 (1999)
  5. Ingrid K, Steven E, Clinical Diabetes., 24, 91 (2006)
  6. Steed DL, J. Vasc. Surg., 21, 71 (1995)
  7. Tsang MW, Wong WKR, Hung CS, Lai KM, Tang W, Cheung EYN, Kam G, Leung L, Chan CW, Chu CM, Lam EKH, Diabetes Care., 26, 1856 (2003)
  8. Bennett SP, Griffiths GD, Schor AM, Leese GP, Schor SL, Br. J. Surg., 90, 133 (2003)
  9. Harding KG, Morris HL, Patel GK, BMJ., 324, 160 (2002)
  10. Eddy JJ, Gideonsen MD, J. Fam. Pract., 54, 533 (2005)
  11. Li W, Zhao H, Teasdale PR, John R, Polymer, 43(17), 4803 (2002)
  12. Rosiak JM, Ulanski P, Pahewski LA, Yoshii F, Makuuchi K, Radiat. Phys. Chem., 46, 161 (1995)
  13. Oh SH, Catherine LW, Anthony A, James JY, Benjamin SH, Biomaterials., 30, 757 (2009)
  14. Ong M, Singapore Med. J., 49, 105 (2008)
  15. Silva RA, Carmona-Ribeiro MA. Petri DFS, Int. J.Biol. Macromol., 41, 404 (2007)
  16. Gomez JL, Bodalo A, Gomez E, Bastida J, Hidalgo AM, Gomez M, Enzyme Microb. Technol., 39(5), 1016 (2006)
  17. Shukla SP, Modi K, Ghosh PK, Devi S, J. Appl. Polym. Sci., 91(4), 2063 (2004)
  18. Safrany A, Radiat. Phys. Chem., 55, 121 (1999)
  19. Bergmeyer HU, Gawehn K, Grassl M, in Methods of Enzymatic Analysis, 2nd ed., Academic Press Inc., New York, 1, 457 (1974)
  20. Miland E, Smyth MR, Fagain CO, J. Chem. Technol. Biotechnol., 67(3), 227 (1996)
  21. Chance B, Maehly AC, Methods Enzymol., 2, 773 (1955)
  22. Shannon LM, Kay E, Lew JY, J. Biol. Chem., 241, 2166 (1966)
  23. Lim YM, Gwon HJ, Park JS, Nho YC, Shim JW, Kwon IK, Kim SE, Baik SH, Macromol. Res., 19(5), 436 (2011)
  24. Temoc Z, Yigitoglu M, Bioprocess Biosyst. Eng., 32, 467 (2009)
  25. Chang MY, Juang RS, Enzyme Microb. Technol., 36(1), 75 (2005)
  26. Paula AV, Urioste D, Santos JC, de Castro HF, J. Chem. Technol. Biotechnol., 82(3), 281 (2007)
  27. Vihersaari T, Kivisaari J, Niinikoski J, Ann. Surg., 179, 889 (1974)
  28. Hunt TK, Linsey M, Grisilis G, Ann. Surg., 181, 135 (1975)
  29. Jonsson K, Hunt TK, Mathes SJ, Ann Surg., 208, 783 (1988)