화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.1, 28-33, January, 2013
Polyoxalate 및 PLGA 미립구의 혼합 비율별에 따른 Zaltoprofen의 방출거동
Effect of Ratio of Polyoxalate/PLGA Microspheres on the Release Behavior of Zaltoprofen
E-mail:
초록
잘토프로펜은 프로피온산 유도체인 비스테로이드성 소염진통제로서 카라기난, 나이스타틴에서 유발된 급성염증에 큰 억제 효과를 가지고 있을 뿐만 아니라 급성 및 만성 염증에도 효과를 가지고 있다. 초기 방출 및 지속적인 방출을 위해서 잘토프로펜이 함유된 폴리옥살레이트(POX)와 PLGA 미립구를 각각 O/W 용매증발법으로 제조 후 각각의 미립구의 혼합비율을 달리하였다. 주사현미경, X선 회절 분석법, 시차 주사 열량계, 그리고 적외선 분광 분석기를 이용하여 잘토프로펜이 함유된 미립구의 물리화학적 성질 및 표면형태를 조사하였다. POX 미립구의 혼합비율이 증가할수록 초기 약물방출이 증가하며, PLGA 미립구의 혼합비율이 증가할수록 느린 약물방출을 보인다. 본 연구에서 초기 약물방출량이 높은 POX 미립구를 PLGA 미립구와 혼합비율을 조절함으로써 약물이 함유된 미립구의 초기방출 계수를 제어할 수 있을 것으로 사료된다.
Zaltoprofen, a propionic acid derivative non-steroidal anti-inflammatory drug, was known to have powerful inhibitory effects on acute, subacute and chronic inflammation. For initial release and sustained release, the microspheres were prepared using an emulsion-solvent evaporation method like an O/W emulsion method with varying the ratio of zaltoprofen-loaded polyoxalate (POX)/PLGA micropheres. The morphology of the microspheres was confirmed by scanning electron microscopy. The crystallinity of microspheres was analyzed by X-ray diffraction and differential scanning calorimeter. Fourier transform infrared spectroscopy was used to analyze the chemical structure of microspheres. The increased ratio of POX microspheres affected the initial drug release, and the sustained release of drug was influenced by ratio of PLGA microspheres. In this study, the initial release behavior of zaltoprofen can be controlled by the ratio of POX/PLGA microspheres.
  1. Tanga HB, Inouea A, Oshitab K, Nakata Y, Neuropharm., 48, 1035 (2005)
  2. Cyriax J, Lancet., 246, 427 (1945)
  3. Hirate K, Uchida A, Ogawa Y, Arai T, Yoda K, Neurosci.Res., 54, 288 (2006)
  4. Matsumoto M, Inoue M, Ueda H, Neurosci. Lett., 397, 249 (2006)
  5. Scheiman JM, Behler EM, Loeffler KM, Elta GH, Dig. Dis. Sci., 39, 97 (1994)
  6. Okamoto T, Kawasaki Y, Masuda Y, Int. J. Mol. Med., 7, 101 (2001)
  7. Eom S, Yoo SC, Kim YK, Lee YH, Lee EY, Yu H, Lee D, Khang G, Polym.(Korea), 34(4), 333 (2010)
  8. Park JS, Yang JC, Yuk SH, Shin HS, Rhee JM, Kim MS, Lee HB, Khang G, Polym.(Korea), 31(3), 189 (2007)
  9. Choi HS, Kim SW, Yun DI, Khang G, Rhee JM, Kim YS, Lee HB, Polym.(Korea), 25(3), 334 (2001)
  10. Zheng W, Int. J. Pharm., 374, 90 (2009)
  11. Jain RA, Int. J. Pharm., 334, 137 (2007)
  12. Seong H, Moon DS, Khang G, Lee JS, Lee HB, Polym.(Korea), 26(1), 128 (2002)
  13. Choi HS, Seo SA, Khang G, Rhee JM, Lee HB, Int.J. Pharm., 234, 195 (2002)
  14. Kim S, Seong K, Kim O, Kim S, Seo H, Lee M, Khang G, Lee D, Biomacromolecules, 11(3), 555 (2010)
  15. Hong D, Song B, Kim H, Kwon J, Khang G, Lee D, Therapeutic Delivery., 2, 1407 (2011)
  16. Hohansen P, Merkle HP, Gander B, Eur. J. Pharm.Biopharm., 50, 413 (2007)
  17. Lee E, Kim S, Seong K, Park H, Seo H, Khang G, Lee D, J. Biomater. Sci., 22, 1683 (2011)
  18. Henderson EJ, Hessel CM, Veinot JGC, J. Am. Chem. Soc., 130(11), 3624 (2008)
  19. Martino PD, Censi R, Barthelemyb C, Gobetto R, Joiris E, Masic A, Odou P, Martelli S, Int. J. Pharm., 342, 137 (2007)
  20. Lee TH, Wang J, Wang CH, J. Control. Release., 83, 437 (2002)
  21. Nii T, Ishii F, Int. J. Pharm., 298, 198 (2005)
  22. Bao TQ, Hiep NT, Kim YH, Yang HM, Lee BT, J. Mater. Sci., 46(8), 2510 (2011)
  23. McDonald PF, Lyons JG, Geever LM, Higginbotham CL, J. Mater. Sci., 45(5), 1284 (2010)
  24. Kim BS, Oh JM, Kim KS, Seo KS, Cho JS, Khang G, Lee HB, Park KN, Kim MS, Biomaterials., 30, 902 (2009)
  25. Park HJ, Hong HK, Song YS, Hong MS, Seo HS, Hong DH, Lee D, Khang G, Polym.(Korea), 34(4), 300 (2010)
  26. Lee JS, Shin JH, Jeong JK, Rhee JM, Lee HB, Khang G, Polym.(Korea), 27(1), 9 (2003)
  27. Zolnik BS, Burgess DJ, J. Control. Release., 122, 338 (2007)