화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.1, 87-92, February, 2013
광촉매를 병합한 플라즈마 공정을 이용한 폐수에 함유된 살충제 분해
Degradation of Pesticides in Wastewater Using Plasma Process Coupled with Photocatalyst
E-mail:
초록
광촉매 혼성 저온 플라즈마는 폐수에 함유된 유기물을 분해시키는 효과적인 기술이다. 본 연구에서는 광촉매가 결합된 특별히 설계된 유전체 방전 시스템을 골프장이나 감귤농가에서 흔히 살포되는 디크로보스, 카보퓨란 및 메치다치온 살충제의 분해에 적용하였다. 단독 및 병합 시스템에서 살충제의 분해를 평가하였다. 단독 시스템은 UV의 차폐 유무 및 산소기체와 공기에 의한 오존(각종 반응 활성종들 포함) 플라즈마를 이용하였다. 혼성 시스템은 UV로 활성화된 산화아연, 이산화티타늄과 그래파이트 옥사이드와 결합하여 공기에 의한 플라즈마 반응에 적용하였다. 그래파이트 옥사이드는 모사 허머스 법으로 제조하여 FT-IR 분광기로 성능을 측정하였다. 반응시간 60 min에서 UV를 차폐하고 공기를 이용한 플라즈마 반응에 의한 분해성능과 비교하였으며, UV로 활성화된 그래파이트 옥사이드(0.01 g/L)와 결합된 플라즈마 반응은 디크로보스와 카보퓨란의 각각 100% 분해도를 보였다. UV를 활용한 광촉매 혼성 플라즈마는 살충제를 분해시키는 효과적인 대안으로 입증되었다.
Nonthermal plasma hybridized with photocatalysts is proven to be an effective tool to degrade toxic organics in wastewater. In this study, a specially designed dielectric barrier discharge(DBD) plasma system combined with photocatalysts was applied to decompose pestiticides such as dichlorovos, carbofuran and methidathon, which are frequently used in the golf courses and the orange plantations. The degradations of the pesticides in single and coupled systems were evaluated. The single system was used with ozone plasma which consisted of electrons, radicals, ions produced by oxygen gas and air, with and without ultra-violet (UV) irradiation, respectively. The coupled systems utilized the air-derived ozone plasma combined with zinc oxide, titanium dioxide and graphite oxide photocatalyst activated by UV. The graphite oxide was synthesized by a modified Hummer’s method and characterized using FTIR spectrometer. It was elucidated that the plasma reaction with graphite oxide (0.01 g/L) brought about almost 100% of degradation degrees for dichlorovos and carbofuran in 60 min, as compared with the performances showed by no catalyst condition. The photocatalyst-hybridized plasma in the presence of UV irradiation was proven to be an effective alternative for degrading pesticides.
  1. Lu C, Barr DB, Person MA, Health Perspect., 116, 537 (2008)
  2. Naddaf M, Saloum S, Alkhaled B, Vacuum., 85, 421 (2010)
  3. Duirk SE, Desetto LM, Davis GM, Lindell C, Cornelison CT, Water Res., 44, 761 (2010)
  4. Lee J, Lee JK, Uhm S, Lee HJ, Appl. Chem. Eng., 22(3), 235 (2011)
  5. Min ZW, Hong SM, Mok CK, Im GJ, J. K. Soc.Pesticide Sci., 16, 11 (2012)
  6. Ahmed S, Rasul MG, Brown R, Hashi MA, J. Environ.Manage., 92, 311 (2011)
  7. Jang DI, Lim TH, Lee SB, Mok YS, Park H, Appl. Chem. Eng., 23(6), 608 (2012)
  8. Cho HB, Suh MH, Park YH, Appl. Chem. Eng., 20, 28 (2009)
  9. Bai Y, Chen J, Mu H, Zhang C, Li B, J. Agric. Food Chem., 57, 6238 (2009)
  10. Lozhechnik AV, Mosse AL, Savichin VV, Skomorokhov DS, Khvedchin IV, J. Eng. Phys. Thermophys., 84, 1114 (2011)
  11. Zhu T, Li J, Jin Y, Liang Y, Ma G, Int. J. Environ. Sci. Tech., 5, 375 (2008)
  12. Cho W, Kim YC, Kim SS, J. Ind. Eng. Chem., 16(1), 20 (2010)
  13. Yeh TF, Syu JM, Cheng C, Chang TH, Teng HS, Adv. Funct. Mater., 20(14), 2255 (2010)
  14. Oh WC, Chen ML, Zhang K, Zhang FJ, J. Korean Phys. Soc., 56, 1097 (2010)
  15. Hao XL, Zhou MH, Lei LC, J. Photochem. Photobiol.A., 136, 163 (2006)
  16. Wang KH, Hsieh YH, Chou MY, Chang CY, Appl. Catal. B: Environ., 21(1), 1 (1999)
  17. Krishnamoorthy K, Mohen R, Kim SJ, Appl. Phys. Lett., 98, 244101 (2011)
  18. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1338 (1958)
  19. Seredych M, Rossin JA, Bendosz TJ, Carbon., 49, 4392 (2011)
  20. Mok YS, Jo JO, Whitehead JC, Chem. Eng. J., 142(1), 56 (2008)
  21. Gunasekaran V, PhD Dissertation, Jeju National University, Korea (2011)
  22. Kopf P, Gilbert E, Eberle SH, J. Photochem. Photobiol. A., 136, 163 (2000)
  23. Okamoto K, Yamamoto Y, Tanaka H, Tanaka M, Itaya A, Bull. Chem. Soc. Jpn., 58, 2015 (1985)
  24. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM, Appl. Catal. B: Environ., 31(2), 145 (2001)
  25. Yanhon B, Jierong C, Yun Y, Limei G, Chunhong Z, Chemosphere., 81, 408 (2010)