화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.2, No.3, 279-288, September, 1991
페라이트 촉매의 Cr 치환효과와 에틸벤젠의 탈수소반응
The Effects of Cr-Substitution in Ferrite Catalysts and the Catalytic Dehydrogenation of Ethylbenzene
초록
몇 종류의 산화물을 혼합하여 그 장점들이 촉매의 특성으로 나타나도록 하는 복합산화물 촉매의 한 종류로서 스피넬 구조를 이루는 Mg- 및 Zn-페라이트를 촉매로 선정하여 Cr 치환에 따른 물성을 분석하고, 에틸벤젠의 탈수소 반응에 대하여 연구하였다. 촉매의 특성 분석에는 XRD, BET, TG/DTA, ESCA, TEM, TPD등의 분석법을 사용하였다. 페라이트 촉매에 대한 Cr 치환 효과를 검토하기 위하여 물성을 종합적으로 분석한 결과, 표면으로의 확산이 용이한 Cr 은 촉매의 표면적 증가와 구조의 안정성에 기여하는 구조적인 조촉매로서 작용하였다. 촉매의 반응성 실험에 있어서는 Cr의 치환에 따른 활성변화를 검토하였는데, MgCrxFe2-xO4 촉매에서 Cr 치환량이 증가할수록 산소의 유동성이 작아져 완전산화반응이 억제되고 스티렌으로의 선택도가 증가하였다.
Mg- and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituent single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, TG/DTA, ESCA, TEM, and TPD methods were employed. The effects of Cr-substitution were intensively studied by the experimental methods mentioned above. Chromium which showed a preferential tendency to diffuse to the surface acted as a structural promoter by increasing surface area and stability of catalyst structure. In the dehydrogenation of ethylbenzene, catalytic activity, and the effects of Cr-substitution were investigated. Oxygen mobility was decreased with the amount of Cr-substitution in MgCrxFe2-xO4, which resulted in the increase of selectivity to styren and the suppression of total oxidation.
  1. Tanabe K, "Solid Acids and Bases," Academic Press, Tokyo (1980)
  2. Nowotny J, Dufour LC, "Surface and Near-Surface Chemistry of Oxide Materials," Elsevier, New York, NY (1988)
  3. Dadyburjoy DB, Jewur SS, Ruckenstein E, Catal. Rev.-Sci. Eng., 19, 293 (1979)
  4. 이충균, 공학석사학위논문, 서울대학교 (1986)
  5. 김영호, 공학석사학위논문, 서울대학교 (1987)
  6. Kung HH, Kung MC, Adv. Catal., 33, 159 (1985)
  7. Bagnasco C, Ciambelli P, Crescitelli S, Russo G, React. Kinet. Catal. Lett., 8, 293 (1978) 
  8. Degannes PN, Ruthven DM, Can. J. Chem. Eng., 57, 627 (1979)
  9. Hirano T, Appl. Catal., 28, 119 (1986) 
  10. Sato S, Ohhara M, Sodesawa T, Nozaki F, Appl. Catal., 37, 207 (1988) 
  11. Bamford CH, Tipper CFH, "Comprehensive Chemical Kinetics," Vol. 20, p. 123, Elsevier, Amsterdam (1978)
  12. Gibson MA, Hightower JW, J. Catal., 41, 420 (1976) 
  13. Rennard RT, Innes RA, Swift HE, J. Catal., 30, 128 (1973) 
  14. Massoth FE, Scarpiello DA, J. Catal., 21, 294 (1971) 
  15. Courty P, Marcilly C, "Preparation of Catalysts II," p. 120, Elsevier, New York, NY (1975)
  16. Delgass WN, Hughes TR, Fadley CS, Catal. Rev.-Sci. Eng., 4, 179 (1970)
  17. Kundu ML, Sengupta AC, Maiti GC, Sen B, Ghosh SK, Kuznetsov VI, Kustovza GN, Yurchenko EN, J. Catal., 112, 375 (1988) 
  18. Kotel'nikov GR, Kizhin AV, Strunnikova LV, Karnaev NA, Kinet. Catal., 27, 823 (1987)
  19. Schraut A, Emig G, Sockel HG, Appl. Catal., 29, 311 (1987) 
  20. Mihajlova A, Andreev A, Shopov D, Dimitrova R, Appl. Catal., 40, 247 (1988) 
  21. Topsooe H, Boudart M, J. Catal., 31, 346 (1973) 
  22. Wang I, Chang WF, Shiau RJ, Wu JC, Cheng CS, J. Catal., 83, 428 (1983) 
  23. Wang I, Wu JC, Cheng CS, Appl. Catal., 16, 89 (1985) 
  24. Hirashima Y, Nishiwaki K, Miyakoshi A, Tsuiki H, Ueno A, Nakabayashi H, Bull. Chem. Soc. Jpn., 61, 1945 (1988) 
  25. Hattori T, Itoh S, Tagawa T, Murakami Y, "Preparation of Catalysts IV," p. 113, Elsevier, New York, NY (1987)