Journal of the Korean Industrial and Engineering Chemistry, Vol.2, No.3, 279-288, September, 1991
페라이트 촉매의 Cr 치환효과와 에틸벤젠의 탈수소반응
The Effects of Cr-Substitution in Ferrite Catalysts and the Catalytic Dehydrogenation of Ethylbenzene
초록
몇 종류의 산화물을 혼합하여 그 장점들이 촉매의 특성으로 나타나도록 하는 복합산화물 촉매의 한 종류로서 스피넬 구조를 이루는 Mg- 및 Zn-페라이트를 촉매로 선정하여 Cr 치환에 따른 물성을 분석하고, 에틸벤젠의 탈수소 반응에 대하여 연구하였다. 촉매의 특성 분석에는 XRD, BET, TG/DTA, ESCA, TEM, TPD등의 분석법을 사용하였다. 페라이트 촉매에 대한 Cr 치환 효과를 검토하기 위하여 물성을 종합적으로 분석한 결과, 표면으로의 확산이 용이한 Cr 은 촉매의 표면적 증가와 구조의 안정성에 기여하는 구조적인 조촉매로서 작용하였다. 촉매의 반응성 실험에 있어서는 Cr의 치환에 따른 활성변화를 검토하였는데, MgCrxFe2-xO4 촉매에서 Cr 치환량이 증가할수록 산소의 유동성이 작아져 완전산화반응이 억제되고 스티렌으로의 선택도가 증가하였다.
Mg- and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituent single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, TG/DTA, ESCA, TEM, and TPD methods were employed. The effects of Cr-substitution were intensively studied by the experimental methods mentioned above. Chromium which showed a preferential tendency to diffuse to the surface acted as a structural promoter by increasing surface area and stability of catalyst structure. In the dehydrogenation of ethylbenzene, catalytic activity, and the effects of Cr-substitution were investigated. Oxygen mobility was decreased with the amount of Cr-substitution in MgCrxFe2-xO4, which resulted in the increase of selectivity to styren and the suppression of total oxidation.
- Tanabe K, "Solid Acids and Bases," Academic Press, Tokyo (1980)
- Nowotny J, Dufour LC, "Surface and Near-Surface Chemistry of Oxide Materials," Elsevier, New York, NY (1988)
- Dadyburjoy DB, Jewur SS, Ruckenstein E, Catal. Rev.-Sci. Eng., 19, 293 (1979)
- 이충균, 공학석사학위논문, 서울대학교 (1986)
- 김영호, 공학석사학위논문, 서울대학교 (1987)
- Kung HH, Kung MC, Adv. Catal., 33, 159 (1985)
- Bagnasco C, Ciambelli P, Crescitelli S, Russo G, React. Kinet. Catal. Lett., 8, 293 (1978)
- Degannes PN, Ruthven DM, Can. J. Chem. Eng., 57, 627 (1979)
- Hirano T, Appl. Catal., 28, 119 (1986)
- Sato S, Ohhara M, Sodesawa T, Nozaki F, Appl. Catal., 37, 207 (1988)
- Bamford CH, Tipper CFH, "Comprehensive Chemical Kinetics," Vol. 20, p. 123, Elsevier, Amsterdam (1978)
- Gibson MA, Hightower JW, J. Catal., 41, 420 (1976)
- Rennard RT, Innes RA, Swift HE, J. Catal., 30, 128 (1973)
- Massoth FE, Scarpiello DA, J. Catal., 21, 294 (1971)
- Courty P, Marcilly C, "Preparation of Catalysts II," p. 120, Elsevier, New York, NY (1975)
- Delgass WN, Hughes TR, Fadley CS, Catal. Rev.-Sci. Eng., 4, 179 (1970)
- Kundu ML, Sengupta AC, Maiti GC, Sen B, Ghosh SK, Kuznetsov VI, Kustovza GN, Yurchenko EN, J. Catal., 112, 375 (1988)
- Kotel'nikov GR, Kizhin AV, Strunnikova LV, Karnaev NA, Kinet. Catal., 27, 823 (1987)
- Schraut A, Emig G, Sockel HG, Appl. Catal., 29, 311 (1987)
- Mihajlova A, Andreev A, Shopov D, Dimitrova R, Appl. Catal., 40, 247 (1988)
- Topsooe H, Boudart M, J. Catal., 31, 346 (1973)
- Wang I, Chang WF, Shiau RJ, Wu JC, Cheng CS, J. Catal., 83, 428 (1983)
- Wang I, Wu JC, Cheng CS, Appl. Catal., 16, 89 (1985)
- Hirashima Y, Nishiwaki K, Miyakoshi A, Tsuiki H, Ueno A, Nakabayashi H, Bull. Chem. Soc. Jpn., 61, 1945 (1988)
- Hattori T, Itoh S, Tagawa T, Murakami Y, "Preparation of Catalysts IV," p. 113, Elsevier, New York, NY (1987)