Journal of the Korean Industrial and Engineering Chemistry, Vol.2, No.4, 340-347, December, 1991
실록산이 함유된 폴리이미드의 합성과 물성
Synthesis and Properties of Siloxane Containing Copolyimides
초록
3, 3', 4, 4'-Benzophenonetetracarboxylic dianhydride(BTDA)와 방향족 디아인민 4, 4'-oxydianiline(ODA) 및 amine terminated polydimethyl siloxane(PDMS)을 이용하여 homopolyimide(HPI)와 siloxane 함유 polyimide(SPI)를 합성하였다. 제 1단계 반응생성물인 homopolyamic acid(HPAA)는 극성용매인 N-methylpyrrolidone(NMP)을 이용하여 얻었다. 제 1 단계 에서 얻은 HPAA 와 tetrahydrofuran(THF)에 녹인 세 종류의 PDMS(분자량Mn=1700g/mol, 4000g/mol, 7000g/mo1)를 30wt%로 반응시켜 siloxane-copolyamic acid (SPAA)를 얻은 후 이를 thermal curing하여 SPI를 얻었다. SPI및 HPI의 precursor인 SPAA와 HPAA의 inherent viscosity는 0.35∼0.48dl/g이었다. 함수율은 SPI는 최저 0.998%, HPI는 최저 1.88%정도였다. BTDA/MDA/siloxane계의 유리전이온도는 258℃-267℃이었다.열중량 분석 결과 BTDA/ODA/siloxane계의 경우가 BTDA/MDA/siloxane계보다 다소 높은 분해 온도를 갖는 것으로 나타났다.
Siloxane containing copolyimide (SPI) was synthesized from 3, 3',4, 4'- benzophenonetetracarboxylic dianhydride(BTDA), 4, 4'-methylene dianiline(MDA), 4, 4'- oxydianiline(ODA) and amine-terminated polydimethylsiloxane(PDMS). Homopolyamic acid(HPAA) in tetrahydrofuran(THF) was reacted with PDMS to obtain siloxane containing polyamic acid(SPAA) followed by the thermal curing to manufacture SPI. SPAA and HPAA exhibited inherent viscosity value of 0.35∼0.48dl/g. Glass transition temperature of SPI ranged in 258 ℃∼264 ℃. SPI had a lower Tg than that of HPI. ODA based HPI and SPI showed slightly higher Tg values, thermal stability, and water content.
- Goosey MT, "Plastics for Electrics," p. 298, Elsevier Applied Science Publishers, London and New York (1985)
- Berger A, "Modified Polyimides by Silicone Block Incorporation," in "Polyimide-Synthesis, Characterization, and Application," K.L. Mittal, vol. 1, p. 67, Plenum Press, New York (1984)
- Clair FL, Yamaki DA, "A Thermoplastic Polyimidesulfone," in "Polyimide-Synthesis, Characterization, and Applications," K.L. Mittal, vol. 1, p. 99, Plenum Press, New York (1984)
- John TV, Valenty VB, "Silicone Polyimides Containing Phenyl Groups in the Siloxane Segments," in "Polyimides-Materials, Chemistry and Characterization," C. Feger, M.M. Khojastech, and J.E. McGrath, p. 91, Elsevier (1989)
- Arnold CA, Chen D, McGrath BE, McGrath JE, Proc. Polym. Mat'l. Sci. Eng., 59, 934 (1988)
- Kruez JA, Endrey AL, Gay EP, Sroog CE, J. Polym. Sci. A: Polym. Chem., 4, 2607 (1966)
- Khor E, Taylor LT, "Electrical Properties of Metal-Doped Pyridine-Derived Polyimide Films," in "Polyimides-Synthesis, Characterization, and Applications," K.L. Mittal, vol. 1, p. 507, Plenum Press, New York (1984)
- Iacombe RH, Greenblatt J, "Polyimide-Synthesis, Characterization, and Application," K.L. Mittal, vol. 2, p. 647, Plenum Press, New York (1984)
- Numata S, Miwa T, Polymer, 30, 1170 (1980)
- Khama DN, Muller WH, Polym. Eng. Sci., 29(14), 954 (1989)
- Ichino T, Sasaki S, Matuura T, Nishi S, J. Polym. Sci. A: Polym. Chem., 28, 323 (1990)
- Kuckertz VH, Die Makromol. Chemie., 98, 101 (1966)
- Arnold CA, Summers JD, McGrath JE, Chen YD, Yoon TH, McGrath BE, Chen D, McGrath BE, "Soluble Polyimide Homopolymers and Poly(Siloxane-Imide) Segmented Copolymers with Improved Dielectric Behaviors,", "Polyimides-Materials, Chemistry, and Characterization," C. Feger, M.M. Khojastech, and J.E. McGrath, p. 69, Elsevier (1989)
- Tesoro GC, Uhlmann DR, Park CE, Ind. Eng. Chem. Res., 26, 1672 (1987)
- Lee YD, Lu CC, Lee HR, J. Appl. Polym. Sci., 41, 877 (1990)
- Tsutuni N, Eur. Polym. J., 24, 837 (1980)
- Krishnamurthy V, Kamel I, J. Appl. Polym. Sci., 38, 605 (1989)
- Koehan FL, Hallgren JE, "Nobel Poly(imide-siloxane) Polymers and Copolymers," in "Silicon-Based Polymer Science," John M. Zeiger and F.W. Gordon Fearon, Advances in Chemistry Series 224, p. 165, American Chemical Society, Washington, D.C. (1990)
- Numata S, Fuisaki K, Kinjo N, "Studies on Thermal Cyclization of Polyamic Acid," in "Polyimides-Synthesis, Characterization, and Applications," K.L. Mittal, vol. 1, p. 259, Plenum Press, New York (1984)
- Johnson EL, J. Appl. Polym. Sci., 15, 2835 (1971)