화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.51, No.2, 245-249, April, 2013
천연가스액 중 프로판, 부탄, 이소-부탄의 개선된 분리회수를 위한 분리벽형 증류탑을 이용한 복합 증류배열에 관한 연구
A Study of Complex Distillation Arrangements Using Dividing Wall Columns for Improved Depropanizing, Debutanizing and Deisobutanizing Fractionation of NGL
E-mail:
초록
천연가스액 회수공정 중 프로판, 부탄, 이소 부탄의 분별증류 과정의 에너지 효율을 향상시키는 방안으로 일반 분리벽형 증류탑 이중배열(DDWC), 일반 분리벽형 증류탑(DWC)과 탑저 분리벽형 증류탑(BDWC)의 순차배열 및 일반 분리벽형 증류탑에 탑정증기 재압축 히트펌프가 탑저 분리벽형 증류탑에 조합된 복합배열을 제안하고 그 성능을 분석하였다. 그 결과 이러한 배열들이 일반 증류배열과 비교하여 재비기와 응축기에서의 에너지 소모를 상당량 줄여주는 효과를 가지는 것을 확인하였으며 소요되는 증류탑의 수와 직경이 줄어들게 되어 투자비용이 대폭 절감될 수 있음을 알 수 있었다. 또한 탑저 분리벽형 증류탑에 탑정증기 재압축 히트펌프를 조합하는 내부 및 외부 열통합 조합을 통하여 가장 많은 운전비용 절감을 달성할 수 있음을 확인하였다.
The depropanizing, debutanizing and deisobutanizing fractionation steps of processing natural gas liquids were improved through studying complex distillation arrangements, including the double dividing wall column arrangement (DDWC), the sequence including a dividing wall column (DWC) and a bottom DWC (BDWC), and the sequence including a DWC and a BDWC with top vapor recompression heat pump. These arrangements offer benefits by decreasing reboiler and condenser power consumption. Reducing the number of columns and their diameters can potentially reduce construction costs. The result also showed that operating cost could be reduced most significantly through novel combinations of internal and external heat integration: bottom dividing wall columns employing a top vapor recompression heat pump.
  1. Kidnay AJ, Parrish WR, “Fundamentals of Natural Gas Processing,” Taylor and Francis: Baca Raton (2006)
  2. Elliot D, Qualls WR, Huang SR, Chen JJ, “Benefit of Integrating NGL Extraction and LNG Liquefaction Technology," AIChE Spring National Meeting, 5th topical conference on Natural Gas Utilization (TI) Session 16c-Gas (2005)
  3. Mak J, “Configurations and Methods for Improved NGL Recovery," U.S. Patent No. 7,051,552 (2006)
  4. Schultz MA, Stewart DG, Harris JM, Rosenblum SP, Shakur MS, O'Brien DE, Chem. Eng. Prog., 98(5), 64 (2002)
  5. Knapp JP, Doherty MF, AIChE J., 36(7), 969 (1990)
  6. Malinen I, Tanskanen J, Ind. Eng. Chem. Res., 48(13), 6387 (2009)
  7. Asprion N, Kaibel G, Chem. Eng. Process., 49(2), 139 (2010)
  8. Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 43(14), 3994 (2004)
  9. Long NVD, Lee S, Lee M, Chem. Eng. Process., 49(8), 825 (2010)
  10. Long NVD, Lee MY, AIChE J. In Press., DOI: 10.1002/aic.13906 (2012)
  11. Duc Long NV, Lee M, Korean J. Chem. Eng., 29(5), 567 (2012)
  12. Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee M, Korean J. Chem. Eng., 28(2), 348 (2011)
  13. Lee S, Nguyen VDL, Lee M, Ind. Eng. Chem. Res., 51(30), 10021 (2012)
  14. Minh LQ, Long NVD, Lee M, Korean J. Chem. Eng., 29(11), 1500 (2012)
  15. Nguyen VDL, Lee M, J. Chem. Eng. Jpn., 45(4), 285 (2012)
  16. Long NVD, Lee MY, Asia-Pac. J. Chem. Eng., 6(3), 338 (2011)
  17. Long NVD, Lee MY, Com. Chem.Eng., 37(10), 119 (2012)
  18. Long NVD, Lee MY, Accepted by Korean J. Chem. Eng. (2012)
  19. Fidkowski Z, Krolikowski L, AIChE J., 32(4), 537 (1986)
  20. Fidkowski Z, Krolikowski L, AIChE J., 33(4), 643 (1987)
  21. Poth N, Brusis D, Stichlmair J, Chem. Ing. Tech., 76(12), 1811 (2004)
  22. Amminudin KA, Smith R, Thong DYC, Towler GP, Trans. IChemE., 79(7), 701 (2001)
  23. Dejanovic I, Matijasevic L, Olujic Z, Chem. Eng. Process., 49(6), 559 (2010)
  24. Long NVD, Lee MY, Asia Pac. J. Chem. Eng., 7(S1), S71 (2012)
  25. Manley DB, “Deethanizer/Depropanizer Sequences with Thermal and Thermo-Mechanical Coupling and Component Distribution," U.S. patent No. 5,673,571 (1997)
  26. Amminudin KA, Smith R, Trans. IChemE., 79(7), 716 (2001)
  27. Manley DB, “Multiple Effect and Distributive Separation of Isobutane and Normal Butane,” U.S. patent No. 8,806,339 (1998)
  28. Aspen Technology., “Aspen HYSYS Thermodynamics COM Interface," Version number V7.1, January (2009)
  29. Diez E, Langston P, Ovejero G, Dolores Romero M, App. Ther. Eng., 29(5-6), 1216 (2009)