Polymer(Korea), Vol.37, No.2, 135-140, March, 2013
REM 모델에 의한 Poly(methyl acrylate)-Poly(acrylonitrile) 공중합체 완화스펙트럼의 pH 영향
pH Effect on Relaxation Spectra of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers by REM Model
E-mail:
초록
Poly(methyl acrylate)-poly(acrylonitrile) 공중합체의 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하여 여러 온도의 공기 중, 증류수, pH 3, 7, 11 용액에서 실행하였다. Ree-Eyring and Maxwell 모델로부터 얻은 완화 스펙트럼 식에 실험적인 응력완화 곡선을 대입하여 poly(methyl acrylate)-poly(acrylonitrile) 공중합체의 완화스펙트럼을 얻었다. 완화스펙트럼의 계산은 Laplace 변환법을 사용한 컴퓨터 프로그램을 이용하였다. 이들 시료의 완화스펙트럼은 유동단위의 분자량과 자체확산 분포와 밀접한 관계가 있음을 알 수 있었다.
The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples was carried out in air, distilled water, pH 3, 7 and 11 solutions at various temperatures using a tensile tester equipped with a solvent chamber. The relaxation spectra of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the equation of relaxation spectrum derived from the Ree-Eyring and Maxwell model. The
determination of relaxation spectra was performed from computer calculation using a Laplace transform method. It was observed that the relaxation spectra of these samples are directly related to the distribution of molecular weights and selfdiffusions of flow segments.
Keywords:poly(methyl acrylate)-poly(acrylonitrile) copolymers;relaxation spectra;REM model;tensile tester;distribution of molecular weights;self-diffusions.
- Winter HH, J. Non-Newton. Fluid Mech., 68(2-3), 225 (1997)
- Berzosa AE, Ribelles JLG, Kripotou S, Pissis P, Macromolecules, 37(17), 6472 (2004)
- Davies AR, Goulding NJ, J. Non-Newt. Fluid Mech., 189-190, 19 (2012)
- Blanc RH, Rheol. Acta., 27, 482 (1988)
- Ferry JD, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York (1980)
- Baumgaertel M, Winter HH, Rheol. Acta., 28, 511 (1989)
- Baumgaertel M, Schausberger A, Winter HH, Rheol. Acta., 29, 400 (1990)
- Baumgaertel M, Winter HH, J. Non-Newt. Fluid Mech., 44, 15 (1992)
- Fulchiron R, Verney V, Cassagnau P, Michel A, J. Rheol., 37, 17 (1993)
- Kamath VM, Mackley MR, J. Non-Newt. Fluid Mech., 32, 119 (1989)
- Friedrich C, Waizenegger W, Winter HH, Rheol. Acta, 47(8), 909 (2008)
- Elster C, Honercamp J, Weese J, Rheol. Acta., 31, 161 (1992)
- Honercamp J, Weese J, Rheol. Acta., 32, 65 (1993)
- Honerkamp J, Weese J, Macromolecules., 22, 4372 (1989)
- Jensen EA, J. Non-Newton. Fluid Mech., 107(1-3), 1 (2002)
- Hansen S, Rheol. Acta, 47(2), 169 (2008)
- Orbey N, Dealy MD, J. Rheol., 35, 1035 (1991)
- Chakraa EB, Barrioza JC, Mazuyera D, Jarniasb F, Bouffetb A, Tribology International., 43, 1674 (2010)
- Baltussen JJM, Northolt MG, Polymer, 45(5), 1717 (2004)
- Kim NJ, Kim ER, Hahn SJ, Bull. Korean Chem. Soc., 13, 413 (1992)
- Kim NJ, Polym.(Korea), 35(3), 232 (2011)
- Friedrich C, Loy RJ, Anderssen RS, Rheol. Acta, 48(2), 151 (2009)
- Nobile MR, Cocchini F, Rheol. Acta, 47(5-6), 509 (2008)
- Clarke N, Colley FR, Collins SA, Hutchings LR, Thompson RL, Macromolecules, 39(3), 1290 (2006)