화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.2, 135-140, March, 2013
REM 모델에 의한 Poly(methyl acrylate)-Poly(acrylonitrile) 공중합체 완화스펙트럼의 pH 영향
pH Effect on Relaxation Spectra of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers by REM Model
E-mail:
초록
Poly(methyl acrylate)-poly(acrylonitrile) 공중합체의 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하여 여러 온도의 공기 중, 증류수, pH 3, 7, 11 용액에서 실행하였다. Ree-Eyring and Maxwell 모델로부터 얻은 완화 스펙트럼 식에 실험적인 응력완화 곡선을 대입하여 poly(methyl acrylate)-poly(acrylonitrile) 공중합체의 완화스펙트럼을 얻었다. 완화스펙트럼의 계산은 Laplace 변환법을 사용한 컴퓨터 프로그램을 이용하였다. 이들 시료의 완화스펙트럼은 유동단위의 분자량과 자체확산 분포와 밀접한 관계가 있음을 알 수 있었다.
The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples was carried out in air, distilled water, pH 3, 7 and 11 solutions at various temperatures using a tensile tester equipped with a solvent chamber. The relaxation spectra of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the equation of relaxation spectrum derived from the Ree-Eyring and Maxwell model. The determination of relaxation spectra was performed from computer calculation using a Laplace transform method. It was observed that the relaxation spectra of these samples are directly related to the distribution of molecular weights and selfdiffusions of flow segments.
  1. Winter HH, J. Non-Newton. Fluid Mech., 68(2-3), 225 (1997)
  2. Berzosa AE, Ribelles JLG, Kripotou S, Pissis P, Macromolecules, 37(17), 6472 (2004)
  3. Davies AR, Goulding NJ, J. Non-Newt. Fluid Mech., 189-190, 19 (2012)
  4. Blanc RH, Rheol. Acta., 27, 482 (1988)
  5. Ferry JD, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York (1980)
  6. Baumgaertel M, Winter HH, Rheol. Acta., 28, 511 (1989)
  7. Baumgaertel M, Schausberger A, Winter HH, Rheol. Acta., 29, 400 (1990)
  8. Baumgaertel M, Winter HH, J. Non-Newt. Fluid Mech., 44, 15 (1992)
  9. Fulchiron R, Verney V, Cassagnau P, Michel A, J. Rheol., 37, 17 (1993)
  10. Kamath VM, Mackley MR, J. Non-Newt. Fluid Mech., 32, 119 (1989)
  11. Friedrich C, Waizenegger W, Winter HH, Rheol. Acta, 47(8), 909 (2008)
  12. Elster C, Honercamp J, Weese J, Rheol. Acta., 31, 161 (1992)
  13. Honercamp J, Weese J, Rheol. Acta., 32, 65 (1993)
  14. Honerkamp J, Weese J, Macromolecules., 22, 4372 (1989)
  15. Jensen EA, J. Non-Newton. Fluid Mech., 107(1-3), 1 (2002)
  16. Hansen S, Rheol. Acta, 47(2), 169 (2008)
  17. Orbey N, Dealy MD, J. Rheol., 35, 1035 (1991)
  18. Chakraa EB, Barrioza JC, Mazuyera D, Jarniasb F, Bouffetb A, Tribology International., 43, 1674 (2010)
  19. Baltussen JJM, Northolt MG, Polymer, 45(5), 1717 (2004)
  20. Kim NJ, Kim ER, Hahn SJ, Bull. Korean Chem. Soc., 13, 413 (1992)
  21. Kim NJ, Polym.(Korea), 35(3), 232 (2011)
  22. Friedrich C, Loy RJ, Anderssen RS, Rheol. Acta, 48(2), 151 (2009)
  23. Nobile MR, Cocchini F, Rheol. Acta, 47(5-6), 509 (2008)
  24. Clarke N, Colley FR, Collins SA, Hutchings LR, Thompson RL, Macromolecules, 39(3), 1290 (2006)