화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.2, 249-253, March, 2013
친환경 PLA/PPC/PLA 적층필름의 제조 및 특성 연구
Fabrication and Characterization of Environmentally Friendly PLA/PPC/PLA Multilayer Film
E-mail:
초록
Poly(lactic acid)(PLA)와 이산화탄소를 원료로 합성한 비결정성 수지인 poly(propylene carbonate)(PPC)를 공압출하여 PLA/PPC/PLA 적층으로 제조하고 일축 연신한 후 수축성 필름을 제조하였다. 이 필름의 기계적, 광학적, 배리어 특성들과 열수축성을 연구하였다. PLA/PPC/PLA 필름은 75 ℃에서 최대 수축률이 60% 이상이었다. PPC 함량이 증가할수록 필름의 수축률이 증가하고, 수축속도는 빠르며, 연신온도가 높을수록 필름의 수축률이 감소하는 경향을 보였다. 또한 제조한 필름은 높은 산소 및 수분 배리어성을 나타내었다. 본 연구에서 제조한 PLA/PPC/PLA 필름은 환경 친화적인 수축성 필름으로의 실용화가 가능할 것으로 기대된다.
From poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) synthesized using CO2, a PLA/PPC/PLA layered film is prepared by coextrusion and then stretched to uniaxial orientation. The mechanical, optical, and barrier properties and shrinkage of the prepared film were investigated in detail. The maximum shrinkage of PLA/PPC/PLA film reached to 60% at 75 ℃. With increasing PPC content, the ratio of shrinkage of the film was increased and its shrinkagerate was increased. The ratio of shrinkage of the film decreased with increasing stretching temperature. The prepared film has oxygen and vapor transmission barrier properties. In this study, the PLA/PPC/PLA film is expected to be commercialized as a environmentally friendly shrinkable film.
  1. Auras R, Lim LT, Selke SEM, Tsuji H, Editors, Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, John Wiley & Sons, Inc., Hoboken, New Jersey (2010)
  2. Lund J, Polym. Degrad. Stab., 59, 145 (1998)
  3. Vink ETH, Rabago KR, Glassner DA, Gruber PR, Polym. Degrad. Stab., 80, 403 (2003)
  4. Harris AM, Lee EC, J. Appl. Polym. Sci., 115(3), 1380 (2010)
  5. Quinn JM, Kirk AG, US Patent 4,020,141 (1977)
  6. Heffelfinger CJ, Polym. Eng. Sci., 18, 1163 (1978)
  7. Aou K, Kang SH, Hsu SL, Macromolecules, 38(18), 7730 (2005)
  8. Llewellyn W, Int. Sleeve Label Conference 2011, Amsterdam Netherlands, AWA, April (2011)
  9. Plastic Suppliers, Inc., http://www.plasticsuppliers.com.
  10. Smith PB, Leugers A, Kang SH, Hsu SL, Yang XZ, J. Appl. Polym. Sci., 82(10), 2497 (2001)
  11. DOE/NETL, Carbon sequestration. Technology roadmap and program plan 2005, US Department of Energy, National Energy Technology Laboratory, May (2005)
  12. Bolm C, Beckmann O, Dabard OAG, Angew. Chem., 111, 957 (1999)
  13. Coates GW, Moor DR, Angew. Chem. Int. Ed., 43, 6618 (2004)
  14. Inoue S, Koinuma H, Tsuruta T, J. Polym. Sci. Part B:Polym. Phys., 7, 287 (1969)
  15. Inoue S, Koinuma H, Tsuruta T, Makromol. Chem., 130, 210 (1969)
  16. Thorat SD, Phillips PJ, Semenov V, Gakh A, J. Appl. Polym. Sci., 89(5), 1163 (2003)
  17. Kim G, Ree M, Kim H, Kim IJ, Kim JR, Lee JI, Macromol. Res., 16(5), 473 (2008)
  18. Luinstra GA, Borchardt E, Adv. Polym. Sci., 245, 29 (2012)
  19. Peng SM, An Y, Chen C, Fei B, Zhuang Y, Dong L, Polym. Degrad. Stab., 80, 141 (2003)
  20. Empower Materials Inc., http://www.empowermaterials.com.
  21. Vechambre C, Buleon A, Chaunier L, Gauthier C, Lourdin D, Macromolecules, 44(23), 9384 (2011)
  22. Luinstra GA, Polym. Rev., 48, 192 (2008)
  23. Koros WJ, Editor, “Barrier Polymers and Structures”, in Effects of Structural Order on Barrier Properties, ACS Symposium series, Chap. 3, 423, 60 (1990)
  24. Swaroop N, Gorden GA, Polym. Eng. Sci., 20, 78 (1980)
  25. Schrenk WJ, Bradley NL, Alfrey T, Polym. Sci., 52, 163 (1994)