화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.6, 624-628, June, 2013
3-D hexagonal close-packed nano-structure from self-organization of triblock copolymer containing lateral ethyl groups in the middle of rod segment
E-mail:,
We report an unusual 3-D hexagonal supramolecular nano-structure via self-assembly of a coil-rod-coil molecule in the solid state. The rod-coil molecule consists of five biphenyls linked together with ether bonds as a rod segment, incorporating lateral ethyl groups in the center of the rod segment, and poly(propylene oxide) (PPO) with a degree of polymerization of 17 as coil segments. The molecular structure was characterized by 1H NMR and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy. The self-assembling behavior of the molecule was investigated by means of differential scanning calorimetry, polarized optical microscopy and small angle X-ray scattering reveals that the lateral ethyl groups in the center of rod segment and the PPO coil segments strongly induce the molecule to self-assemble into the 3-D hexagonal close-packed nano-structure in the solid state.
  1. Vriezema DM, Aragones MC, Elemans JAAW, Cornelissen JJLM, Rowan AE, Nolte RJM, Chem. Rev., 105(4), 1445 (2005)
  2. Lee J, Kim J, Yun M, Park C, Park J, Lee KH, Kim C, Soft Matter, 7, 9021 (2011)
  3. Huang Z, Lee E, Kim HJ, Lee M, Chem. Commun., 6819 (2009)
  4. Huang Z, Kang SK, Lee M, Nat. Commun., 2, 459 (2011)
  5. Kim HJ, Kim T, Lee M, Acc. Chem. Res., 44, 72 (2011)
  6. Lee SH, Park JS, Koo CM, Lim BK, Kim SO, Macromol. Res., 16(3), 261 (2008)
  7. Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V, Chem. Rev., 109(11), 6275 (2009)
  8. Chen L, Zhong KL, Jin LY, Huang Z, Liu L, Hirst LS, Macromol. Res., 18(8), 800 (2010)
  9. Yan Y, Li B, Li W, Li H, Wu L, Soft Matter, 5, 4047 (2009)
  10. Zhong K, Chen T, Yin B, Jin LY, Macromol. Res., 17(4), 280 (2009)
  11. Zhong KL, Yang CC, Chen T, Yin BZ, Jin LY, Huang ZG, Lee E, Macromol. Res., 18(3), 289 (2010)
  12. Lee M, Cho BK, Zin WC, Chem. Rev., 101(12), 3869 (2001)
  13. Ryu JH, Oh NK, Zin WC, Lee M, J. Am. Chem. Soc., 126(11), 3551 (2004)
  14. Kato T, Mizoshita N, Kishimoto K, Angew. Chem.-Int. Edit., 45, 38 (2006)
  15. Zhong KL, Huang Z, Man ZJ, Jin LY, Yin BZ, Lee M, J. Polym. Sci. A: Polym. Chem., 48(6), 1415 (2010)
  16. Lee E, Kim J, Lee M, Angew. Chem.-Int. Edit., 47, 6375 (2008)
  17. Yang C, Zhong K, Wang Q, Chen T, Jin LY, Fiber Polym., 12, 983 (2011)
  18. Palmer LC, Stupp SI, Acc. Chem. Res., 41, 1674 (2008)
  19. Kim JK, Lee JI, Lee DH, Macromol. Res., 16(4), 267 (2008)
  20. Reddy RA, Baumeister U, Chao JL, Kresse H, Tschierske C, Soft Matter, 6, 3883 (2010)
  21. Zhong K, Man Z, Huang Z, Chen T, Yin B, Jin LY, Polym. Int., 60, 845 (2011)
  22. Lee E, Huang Z, Ryu J, Lee M, Chem. Eur. J., 14, 6957 (2008)
  23. Jin LY, Ahn JH, Lee M, J. Am. Chem. Soc., 126(39), 12208 (2004)
  24. Jin LY, Bae J, Ahn JH, Lee M, Chem. Commun., 9, 1197 (2005)
  25. Tian LR, Zhong KL, Jin LY, Soft Matter, 6, 5993 (2010)
  26. Zhong KL, Wang Q, Chen T, Huang ZG, Yin BZ, Jin LY, J. Appl. Polym. Sci., 123(2), 1007 (2012)
  27. From the experimental values of the lattice constants (a, b, c and γ=60°), and the density (ρ=1.02), the average number (n) of molecules in a single rod bundle can be calculated according to following equation, where M is the molecular weight and N A is Avogadro’s number: \(n = \frac{{abc \sin \gamma \rho }} {{{{2M} \mathord{\left/ {\vphantom {{2M} {N_A }}} \right. \kern-\nulldelimiterspace }}}}\)} {N_A