화학공학소재연구정보센터
Macromolecular Research, Vol.16, No.3, 261-266, April, 2008
Self-Organized Grafting of Carbon Nanotubes by End-Functionalized Polymers
E-mail:
A variety of end-functionalized polymers were grafted spontaneously onto multi-walled carbon nanotubes (MWNTs) using a solution mixing process. The end-functional groups of the polymers underwent noncovalent grafting to the defect sites at the surface of the purified MWNTs through zwitterionic interaction or hydrogen bonding. The physically grafted polymers including polystyrene (PS), poly(methyl methacrylate) (PMMA), polyethylene oxide (PEO), and polydimethylsiloxane (PDMS) provided sufficient compatibility with an organic solvent or polymer matrix, such that the nanotubes could be finely dispersed in various organic media. This approach is universally applicable to a broad range of polymer-solvent pairs, ensuring highly dispersed carbon nanotubes through simple solution mixing.
  1. Dresselhaus MS, Dresselhaus G, Jorio A, Annu. Rev. Mater. Res., 34, 247 (2004)
  2. Yu MF, Lourie O, Dyer M, Moloni K, Kelly TF, Ruoff RS, Science, 287, 637 (2000)
  3. Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E, Phil. Trans. R. Soc., 362, 2065 (2004)
  4. Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE, Science, 273(5274), 483 (1996)
  5. Manchado MAL, Valentini L, Biagiotti J, Kenny JM, Carbon, 43, 1499 (2005)
  6. Hirsch A, Angew. Chem.-Int. Edit., 41, 1853 (2002)
  7. Ham HT, Koo CM, Kim SO, Choi YS, Chung IJ, Macromol. Res., 12(4), 384 (2004)
  8. Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C, Science, 300, 775 (2003)
  9. Park I, Park M, Kim J, Lee H, Lee MS, Macromol. Res., 15(6), 498 (2007)
  10. Kum CK, Sung YT, Han MS, Kim WN, Lee HS, Lee SJ, Joo J, Macromol. Res., 14(4), 456 (2006)
  11. Park WK, Kim JH, Lee SS, Kim J, Lee GW, Park M, Macromol. Res., 13(3), 206 (2005)
  12. Lee YW, Kang SM, Yoon KR, Chi YS, Choi IS, Hong SP, Yu BC, Paik HJ, Yun WS, Macromol. Res., 13(4), 356 (2005)
  13. Kang YJ, Taton TA, J. Am. Chem. Soc., 125(19), 5650 (2003)
  14. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG, Nano Lett., 3, 269 (2003)
  15. Chen RJ, Zhan YG, Wang DW, Dai HJ, J. Am. Chem. Soc., 123(16), 3838 (2001)
  16. Murakami H, Nomura T, Nakashima N, Chem. Phys. Lett., 378(5-6), 481 (2003)
  17. Lee SH, Ham HT, Park JS, Chung IJ, Kim SO, Macromol. Symp., 249-250, 618 (2007)
  18. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richsrdson RE, Tassi NG, Nat. Mater., 2, 338 (2003)
  19. Tang BZ, Xu HY, Macromolecules, 32(8), 2569 (1999)
  20. O'Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE, Chem. Phys. Lett., 342(3-4), 265 (2001)
  21. Chen J, Liu HY, Weimer WA, Halls MD, Waldeck DH, Walker GC, J. Am. Chem. Soc., 124(31), 9034 (2002)
  22. Coleman JN, Curran S, Dalton AB, Davey AP, McCarthy B, Blau W, Barklie RC, Phys. Rev. B, 58, R7492 (1998)
  23. Huang W, Fernando S, Allard LF, Sun YP, Nano Lett., 3, 565 (2003)
  24. Hu H, Bhowmik P, Zhao B, Hamon MA, Itkis ME, Haddon RC, Chem. Phys. Lett., 345(1-2), 25 (2001)
  25. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE, Science, 280(5367), 1253 (1998)
  26. Anson CE, Creaser CS, Stephenson GR, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 52, 1183 (1996)
  27. Bieri M, Burgi T, Langmuir, 22(20), 8379 (2006)
  28. Wang M, Pramoda KP, Goh SH, Carbon, 44, 613 (2006)