화학공학소재연구정보센터
Macromolecular Research, Vol.12, No.4, 384-390, August, 2004
Chemical Modification of Carbon Nanotubes and Preparation of Polystyrene/Carbon Nanotubes Composites
E-mail:
Single-walled carbon nanotubes (SWNTs) have been chemically modified through the formation of carboxylic acid functionalities or by grafting octadecylamine and polystyrene onto them. We purified SWNTs with nitric acid to remove some remaining catalysts and amorphous carbon materials. After purification, we broke the carbon nanotubes and shortened their lengths by using a 3:1 mixture of concentrated sulfuric acid and nitric acid. During these purification and cutting processes, carboxylic acid units formed at the open ends of the SWNTs. Octadecylamine and amino-terminated polystyrene were grafted onto the cut SWNTs by condensation reactions between the amine and carboxylic acid units. The cut SWNTs did not disperse in organic solvents, but the octadecylaminegrafted and polystyrene-grafted SWNTs dispersed well in dichloromethane and aromatic solvents (e.g., benzene, toluene). Composites were prepared by mixing polystyrene with the octadecylamine-grafted or polystyrene-grafted SWNTs. Each composite had a higher dynamic storage modulus than that of a pristine polystyrene. The composites exhibited enhanced storage moduli, complex viscosities, and unusual non-terminal behavior when compared with a monodisperse polystyrene matrix because of the good dispersion of carbon nanotubes in the polystyrene matrix.
  1. Iijima S, Nature, 354, 56 (1991) 
  2. Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C, Nature, 386(6624), 474 (1997) 
  3. Wong EW, Sheehan PE, Lieber CM, Science, 277(5334), 1971 (1997) 
  4. Dresselhaus MS, Dresselhaus G, Eklund PC, Science of Fullerenes and Carbon Nanotubes, Academic Press Inc., London, Chap.19. (1996)
  5. Ebbesen TW, Carbon Nanotubes, CRC Press, Boca Raton (1997)
  6. Yakobson BI, Brabec CJ, Bernholc J, Phys. Rev. Lett., 76, 2511 (1996) 
  7. Ajayan PM, Stephan O, Colliex C, Trauth D, Science, 265(5176), 1212 (1994) 
  8. Shaffer MSP, Windle AH, Adv. Mater., 11, 937 (1999) 
  9. Ajayan PM, Schadler LS, Giannaris C, Rubio A, Adv. Mater., 12, 750 (2000) 
  10. Qian D, Dickey EC, Andrews R, Rantell T, Appl. Phys. Lett., 76, 2868 (2000) 
  11. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC, Science, 282, 95 (1998) 
  12. Hamon MA, Chen J, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC, Adv. Mater., 11, 834 (1999) 
  13. Riggs JE, Guo ZX, Carroll DL, Sun YP, J. Am. Chem. Soc., 122(24), 5879 (2000) 
  14. Boul PJ, Liu J, Mikelson ET, Huffman CB, Ericson LM, Chiang IW, Smith KA, Colbert DT, Hauge RH, Margrave JL, Smalley RE, Chem. Phys. Lett., 310, 367 (1999) 
  15. Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R, Macromolecules, 35(23), 8825 (2002) 
  16. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE, Science, 280(5367), 1253 (1998) 
  17. Haddon RC, Nature, 378(6554), 249 (1995) 
  18. Gelinas S, Finch JA, Vreugdenhil A, J. Colloids Surfaces A, 164, 257 (2000) 
  19. Hiura H, Ebbesen TW, Tanigaki K, Adv. Mater., 7, 275 (1995) 
  20. Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC, J. Phys. Chem. B, 105(13), 2525 (2001) 
  21. Krishnamoorti R, Giannelis EP, Macromolecules, 30(14), 4097 (1997) 
  22. Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001) 
  23. Kim WS, Song HS, Lee BO, Kwon KH, Lim YS, Kim MS, Macromol. Res., 10(5), 253 (2002)