Macromolecular Research, Vol.21, No.6, 636-640, June, 2013
Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells
E-mail:,
TiO2 multi-electrodes composed of nanoparticles and nanorods were prepared for use as electrodes in dye-sensitized solar cells (DSSC) in an effort to improve the light-to-electricity conversion efficiency. TiO2 nanorods have been successfully prepared via electrospinning methods using a solution containing titanium isopropoxide (TIP). Acetic acid is generally used as a catalyst in sol-gel processes involving TIP; however, acetic acid induces rapid solidification of the sol solution, resulting in clogging of the nozzle during electrospinning, thereby hindering the mass production of TiO2 nanorods. In this work, we introduced acetyl acetone as a new catalyst and optimized the electrospinning conditions of TiO2 nanofibers. The use of acetyl acetone catalysts dramatically extended the solidification time of the TIP sol solution. The DSSC efficiency was improved through the use of TiO2 multi-electrodes.
Keywords:TiO2 nanorod;electrospinning;dye-sensitized solar cells (DSSC);sol-gel process;acetyl acetone
- Choi H, Kim YJ, Varma RS, Dionysiou DD, Chem. Mater., 18, 5377 (2006)
- Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ, Nat. Photonics, 3, 297 (2009)
- Baek WH, Seo I, Yoon TS, Lee HH, Yun CM, Kim YS, Sol. Energy Mater. Sol. Cells, 93(9), 1587 (2009)
- Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY, Nanotechnology, 15, 1861 (2004)
- Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 6, 215 (2006)
- Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S, Phys. Chem. Chem. Phys., 7, 4157 (2005)
- Wei MD, Konishi Y, Zhou HS, Sugihara H, Arakawa H, J. Electrochem. Soc., 153(6), A1232 (2006)
- Vlachopoulos N, Liska P, Augustynski J, Graetzel M, J. Am. Ceram. Soc., 110, 1216 (1988)
- O’Regan B, Gratzel M, Nature, 353, 737 (1991)
- Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 6, 215 (2006)
- Song M, Park JS, Kim YH, Karim MA, Jin SH, Ree RS, Cho YR, Gal YS, Lee JW, Macromol. Res., 19(7), 654 (2011)
- Jaroenworaluck A, Sunsaneeyametha W, Kosachan N, Stevens R, Surf. Interface Anal., 38, 473 (2006)
- Schulz J, Hohenberg H, Pflucker F, Gartner E, Will T, Pfeiffer S, Wepf R, Wendel V, Gers-Barlag H, Wittern KP, Adv. Drug Deliv. Rev., 54, 157 (2002)
- Tursiloadi S, Imai H, Hirashima H, J. Non-Cryst. Solids, 350, 271 (2004)
- Adachi M, Murata Y, Takao J, Jiu JT, Sakamoto M, Wang FM, J. Am. Chem. Soc., 126(45), 14943 (2004)
- Liu B, Aydil ES, J. Am. Chem. Soc., 131(11), 3985 (2009)
- Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M, Electrochemistry, 70, 418 (2002)
- Oh JK, Lee JK, Kim HS, Han SB, Park KW, Chem. Mater., 22, 1114 (2010)
- Asagoe K, Suzuki Y, Ngamsinlapasathian S, Yoshikawa S, J. Phys. Conf. Ser., 61, 1112 (2007)
- Saji VS, Pyo M, Thin Solid Films, 518(22), 6542 (2010)
- Song MY, Ahn YR, Jo SM, Kim DY, Ahn JP, Appl. Phys. Lett., 87, 113113 (2005)
- Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S, Nanotechnology, 18, 365709 (2007)
- Li D, Xia Y, Nano Lett., 3, 555 (2003)
- Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S, J. Appl. Phys., 102, 111101 (2007)
- Park SH, Choi HJ, Lee SB, Lee SM, Cho SE, Kim KH, Kim YK, Kim MR, Lee JK, Macromol. Res., 19(2), 142 (2011)
- Jung MW, Oh HJ, Yang JC, Shul YG, Bull. Korean Chem. Soc., 20, 1394 (1999)
- Chen HJ, Wang L, Chiu WY, Mater. Chem. Phys., 101(1), 12 (2007)
- Tekmen C, Suslu A, Cocen U, Mater. Lett., 62, 4470 (2008)
- Parra R, Goes MS, Castro MS, Longo E, Bueno PR, Varela JA, Chem. Mater., 20, 143 (2008)