화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.1, 61-66, February, 1995
표면개질화된 고강도 폴리에틸렌섬유의 분광학적 연구
Spectroscopic Studies of Surface Modified High Modulus Polyethylene Fiber
초록
실란 카플링제와 플라즈마 처리에 의해 고강도 폴리에틸렌 섬유의 표면을 개질화하였다. 실란 카플링제의 경우, 고강도 폴리에틸렌 섬유의 표면을 서로 다른 실란 카플링제로 처리하였으며, 비닐 트리아세톡시 실란이 섬유 표면에 하이드록시기를 형성하는데 가장 효과적이었다. 또한 폴리에틸렌 섬유의 표면 개질화는 플라즈마 처리 시간에 따라 시도되었으며, DRIFT방법에 의해 폴리에틸렌 섬유 표면을 분석하였다. 플라즈마/실란 처리 방법은 플라즈마에 의한 표면 개질화보다 폴리에틸렌 섬유 표면에 하이드록시기를 효과적으로 형성하였다. 섬유 표면에 실란 카플링제의 흡착량은 실란 카플링제와 폴리에틸렌 섬유의 상용성에 의존하였다
Silane coupling agent and plasma treatment were used for the surface modification of high modulus polyethylene fiber. In the case of the silane coupling agent, the surface of high modulus polyethylene fiber was modified by various silane coupling agents. Vinyltriacetoxy silane was the most effective for the creation of hydroxy group onto the PE fiber surface. Surface modification of PE fiber was also carried out as a function of plasma treatment time. Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy has been utilized in order to analyze the PE fiber surface. Plasma/silane treatment of PE fiber enhanced the hydroxy formation on the surface compared to the plasma treatment only. Adsorption amount of the silane coupling agent was dependent on the compatibility between the PE fiber and silane coupling agent.
  1. Smith P, Lemstra PJ, J. Mater. Sci., 15, 505 (1980) 
  2. Capaccio G, Ward IM, Polymer, 15, 233 (1974) 
  3. Adams RS, Zimmerman RS, Adv. Tech. Proc. 30th National SAMPE Symposium, Anaheim, CA, 280 (1985)
  4. Chang HW, Lin LC, Bhatnagar A, Proc. 31st National Sampe Symposium, Anaheim, CA, 859 (1986)
  5. Adams DF, Zimmerman RS, 31st National SAMPE Symposium, Anaheim, CA, 1456 (1986)
  6. Gibson RF, Rao VS, Magenta R, 32nd National SAMPE Symposium, Anaheim, CA, 231 (1987)
  7. "Ultra-high Modulus Polymer," Eds. A. Ciferri and I.M. Ward Chap 1-3, Applied Science Publishers, London (1979)
  8. Ward IM, "Advances in Polymer Science," 70, 1, Springer-Verlag, Berlin (1985)
  9. Ward IM, Ladizesky NH, "Composite Interfaces," Eds. H. Ishida and J.L. Koenig, 37, North-Holland, New York (1986)
  10. Yuhas DE, Dolgin BP, Vorres CL, Nguyen H, Schriver A, "Interfaces in Polymer Ceramic, and Metal Matrix Composites," Ed. H. Ishida, 595, Elsevier Science Publishing Co. Inc., New York (1988)
  11. Kaplan SL, Rose PW, Nguyen JX, Chang HW, SAMPE Quaterly, July, 55 (1988)
  12. Ladizesky NH, Ward IM, J. Mater. Sci., 18, 533 (1983) 
  13. Ladizesky NH, Ward IM, Phillips LN, U.S. Patent, 4,410,586 (1983)
  14. Ladizesky NH, Ward IM, Phillips LN, European Patent, Application 82301689 (1982)
  15. Wong R, "Fundamental Aspects of Fiber Reinforced Plastic Composites," R.T. Schwartz and H.S. Schwartz, Eds., Interscience, 237, New York (1968)
  16. Erickson PW, J. Adhes., 2, 131 (1970)
  17. Plueddemann EP, J. Adhes., 2, 184 (1970)
  18. "Interface in Polymer Matrix Composites," in Composite Materials, E.P. Plueddmann, Ed., Academic, New York (1974)
  19. Ishida H, Jang J, Makromol. Chem. Macromol. Symp., 22, 191 (1988)
  20. Choe CR, Jang J, "Controlled Interphase in Composite Materials," Ed. H. Ishida, 97 (1990)
  21. Ward IM, Ldizesky NH, "Composite Interfaces," Eds., H. Ishida and J.L. Koenig, 37 (1986)
  22. Braun WL, Appl. Surf. Sci., 4, 291 (1980) 
  23. Gilberg G, Kemp D, J. Appl. Polym. Sci., 26, 2033 (1981)
  24. Nuzzo RG, Snolinsky G, Macromolecules, 17, 1013 (1984) 
  25. Sibilia JP, J. Appl. Polym. Sci., 17, 2911 (1973) 
  26. Choe CR, Jan J, Korea Polym. J., 2(2), 126 (1994)