화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.1, 85-92, January, 2014
생체재료로서의 고순도 수용성 키토산 올리고당의 제조와 특성
Preparation and Characterization of Highly Pured Water-soluble Chitosan Oligosaccharides as Biomaterials
E-mail:,
초록
본 연구에서는 유전자 전달체로 응용하기 위하여 다양한 분자량의 고순도 수용성 키토산 올리고당을 한외여 과막을 이용하여 분급화 하였다. 분급화한 고순도 수용성 키토산 올리고당의 평균분자량과 분포를 측정하였고, 매우 좁은 분포를 갖는 것을 확인하였다. 고순도 수용성 키토산 올리고당의 분자량은 한외여과막에 따라 1에서 10 kDa의 범위를 가진다는 것을 젤크로마토그래피 측정을 통하여 확인하였다. 분급화된 키토산의 구조는 1H NMR과 FTIR을 통하여 구조를 확인하였고, UV를 통하여 탈아세틸화도를 측정한 결과 90% 이상의 높은 탈아세틸화도를 갖는다. 본 연구를 통하여 제조된 고순도 키토산 올리고당은 세포독성이 없고 아주 좁은 분자량 분포와 높은 순도를 갖고 있음을 확인하였다.
To develop water-soluble chitosan as an effient gene delivery carrier, chitosan oligosaccharides (COSs) with various molecular weights (MW) were studied for gene transfection agents. MWs of COSs fractionated by ultrafiltration techniques were identified as narrow MW distributions with the average MW ranging from 1 to 10 kDa through gel permeation chromatography (GPC) measurement depending on the applied ultrafiltration membranes. Their structural characterizations were analyzed by FTIR spectrophotometer and 1H NMR. The degree of deacetylation was determined by UV spectroscopy showing the degree of deacetylation above 90%. The relative cell viabilities were maintained over 100% (10 mg/mL), independent of the MW of the fractionated COSs. The fractionated COSs of 10 mg/mL concentration with narrow MW distributions showed non-cytotoxicity in Caco-2 cells.
  1. Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW, J. Control. Rel., 70, 399 (2001)
  2. llum LI, Pharm. Res., 15, 1326 (1998)
  3. Ramnani SP, Sabharwal S, React. Funct. Polym., 66(9), 902 (2006)
  4. Cho SK, Kim SJ, Jung BO, Kim JJ, Choi KS, Lee YM, J. Korean Ind. Eng. Chem., 5(5), 899 (1994)
  5. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ, Chem. Rev., 104(12), 6017 (2004)
  6. Chien PJ, Sheu F, Yang FH, J. Food Eng., 78(1), 225 (2007)
  7. Shahidi F, Arachchi JKV, Jeon YJ, Sci. Technol., 10, 37 (1999)
  8. Nah JW, Jang MK, J. Polym. Sci. A: Polym. Chem., 40(21), 3796 (2002)
  9. Tokura S, Azuma I, Editors, Chitin Derivatives in Life Science, Japan Soc. Chitin, Sapporo (1992)
  10. Ikeda I, Sugano M, Yoshida K, Sasaki E, Iwamoto Y, Hatano K, J. Agric. Food Chem., 41, 431 (1993)
  11. Muzzarelli RAA, Lough C, Emanuelli M, Cabohydr. Res., 8, 433 (1987)
  12. Kumar MNVR, React. Funct. Polym., 46, 1 (2000)
  13. Koping-Hoggard M, Varum KM, Issa M, Danielsen S, Christensen BE, Stokke BT, Artursson P, Gene Therapy, 11, 1441 (2004)
  14. Koping-Hoggard M, Mel'nikova YS, Varum KM, Lindman B, Artursson P, J. Gene Med., 5, 130 (2003)
  15. Son S, Chae SY, Choi C, Kim MY, Ngugen VG, Jang MK, Nah JW, Kweon JK, Macromol. Res., 12(6), 573 (2004)
  16. Van der Lubben IM, Verhoef JC, Borchard G, Junginger HE, Adv. Drug Deliv. Rev., 52, 139 (2001)
  17. Kim WJ, Yockman JW, Lee M, Jeong JH, Kim YH, Kim SW, J. Control. Rel., 106, 224 (2005)
  18. Wu GY, Wu CH, Biochem., 27, 887 (1998)
  19. Wu GY, Wilson JM, Shalaby F, Grossman M, Shafritz DA, Wu CH, J. Biol. Chem., 266, 14338 (1991)
  20. Creusat G, Rinaldi AS, Weiss E, Elbaghdadi R, Remy JS, Mulherkar R, Zuber H, Bioconjug. Chem., 21, 994 (2010)
  21. Schaffer DV, Fidelman NA, Dan N, Lauffenburger DA, Biotechnol. Bioeng., 67(5), 598 (2000)
  22. Khan TA, Peh KK, Ch’ng HS, J. Pharm. Pharmaceut. Sci., 5, 205 (2002)