화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.2, 224-229, February, 2014
The influence of calcination temperature on catalytic activities in a Co based catalyst for CO2 dry reforming
E-mail:,
The carbon dioxide dry reforming of methane (CDR) reaction could be thermodynamically favored in the range of 800 to 1,000 ℃. However, the catalyst in this reaction should be avoided at the calcination temperature over 800 ℃ since strong metal support interaction (SMSI) in this temperature range can decrease activity due to loss of active sites. Therefore, we focused on optimizing the temperature of pretreatment and a comparison of surface characterization results for CDR. Results related to metal sintering over support, re-dispersion by changing of particle size of metal-support, and strong metal support interaction were observed and confirmed in this work. In our conclusion, optimum calcination temperature for a preparation of catalyst was proposed that 400 ℃ showed a higher and more stable catalytic activity without changing of support characteristics.
  1. Alyea EC, He D, Wang J, Appl. Catal. A, 104, 77 (1993)
  2. Wang S, Lu GQM, Millar GJ, Energy Fuel, 624, 896 (1996)
  3. Kim J, Kim T, Yoo JW, Lee KB, Hong SI, Korean J. Chem. Eng., 29(10), 1329 (2012)
  4. Moon KI, Kim CH, Choi JS, Lee SH, Kim YG, Lee JS, Korean Chem. Eng. Res., 35, 890 (1997)
  5. Inui T, Ichino K, Matsuoka I, Takeguchi T, Iwamoto S, Pu SB, Nishimoto SI, Korean J. Chem. Eng., 14(6), 441 (1997)
  6. Ruckenstein E, Wang HY, Appl. Catal. A: Gen., 204(2), 257 (2000)
  7. Ferreira-Aparicio P, Guerrero-Ruiz A, Rodriguez-Ramos I, Appl. Catal. A: Gen., 170(1), 177 (1998)
  8. Song SH, Lee SB, Bae JW, Prasad PSS, Jun KW, Shul YG, Catal. Lett., 129(1-2), 233 (2009)
  9. Wang SB, Lu GQ, Millar GJ, Energy Fuels, 10(4), 896 (1996)
  10. Song SH, Lee SB, Bae JW, Sai Prasad PS, Jun KW, Catal. Commun., 9, 2282 (2008)
  11. Fan MS, Abdullah AZ, Bhatia S, ChemCatChem, 1, 192 (2009)
  12. Reuel RC, Bartholomew CH, J. Catal., 85, 63 (1984)
  13. Kogelbauer A, Weber JC, Goodwin JG, Catal. Lett., 34(3-4), 259 (1995)
  14. Jozwiak WK, Szubiakiewicz E, Goralski J, Klonkowski A, Paryjczak T, Kinet. Catal., 45, 247 (2004)
  15. Vansteen E, Sewell GS, Makhothe RA, Micklethwaite C, Manstein H, Delange M, Oconnor CT, J. Catal., 162(2), 220 (1996)
  16. Chin RL, Hercules DM, J. Phys. Chem., 86, 360 (1982)
  17. Riva R, Miessner H, Vitali R, Del Piero G, Appl. Catal. A: Gen., 196(1), 111 (2000)
  18. Lapidus A, Krylova A, Kazanskii V, Borovkov V, Zaitsev A, Rathousky J, Zukal A, Jancalkova M, Appl. Catal., 73, 65 (1991)
  19. Lapidus A, Krylova A, Rathousky J, Zukal A, Jancalkova M, Appl. Catal., 80, 1 (1992)
  20. Lira E, Lopez CM, Oropeza F, Bartolini M, Alvarez J, Goldwasser M, Linares FL, Lamonier JF, Zurita MJP, J. Mol. Catal. A-Chem., 281(1-2), 146 (2008)
  21. Jablonski JM, Okal J, Potoczna-Petru D, Krajczyk L, J. Catal., 220(1), 146 (2003)
  22. Ernst B, Bensaddik A, Hilaire L, Chaumette P, Kiennemann A, Catal. Today, 39(4), 329 (1998)
  23. Potoczna-Petru D, Jablonski JM, Okal J, Krajczyk L, Appl. Catal. A: Gen., 175(1-2), 113 (1998)
  24. Petitto SC, Langell MA, J. Vac. Sci. Technol. A, 22(4), 1690 (2004)
  25. Bradford MC, Vannice MA, Appl. Catal. A: Gen., 142(1), 73 (1996)
  26. Cotton FA, Wilkinson G, Advanced Inorganic Chemistry, Fifth Ed., A Wiley-Interscience, New York (1988)
  27. Budiman AW, Song SH, Chang TS, Shin CH, Choi MJ, Catal. Surv. Asia, 16, 183 (2012)