Korean Journal of Chemical Engineering, Vol.31, No.2, 224-229, February, 2014
The influence of calcination temperature on catalytic activities in a Co based catalyst for CO2 dry reforming
E-mail:,
The carbon dioxide dry reforming of methane (CDR) reaction could be thermodynamically favored in the range of 800 to 1,000 ℃. However, the catalyst in this reaction should be avoided at the calcination temperature over 800 ℃ since strong metal support interaction (SMSI) in this temperature range can decrease activity due to loss of active sites. Therefore, we focused on optimizing the temperature of pretreatment and a comparison of surface characterization results for CDR. Results related to metal sintering over support, re-dispersion by changing of particle size of metal-support, and strong metal support interaction were observed and confirmed in this work. In our conclusion, optimum calcination temperature for a preparation of catalyst was proposed that 400 ℃ showed a higher and more stable catalytic activity without changing of support characteristics.
Keywords:Dry Reforming;CO2 Utilization;Sintering;Metal-support Interaction;Synthesis Gas;Pre-treatment Effect
- Alyea EC, He D, Wang J, Appl. Catal. A, 104, 77 (1993)
- Wang S, Lu GQM, Millar GJ, Energy Fuel, 624, 896 (1996)
- Kim J, Kim T, Yoo JW, Lee KB, Hong SI, Korean J. Chem. Eng., 29(10), 1329 (2012)
- Moon KI, Kim CH, Choi JS, Lee SH, Kim YG, Lee JS, Korean Chem. Eng. Res., 35, 890 (1997)
- Inui T, Ichino K, Matsuoka I, Takeguchi T, Iwamoto S, Pu SB, Nishimoto SI, Korean J. Chem. Eng., 14(6), 441 (1997)
- Ruckenstein E, Wang HY, Appl. Catal. A: Gen., 204(2), 257 (2000)
- Ferreira-Aparicio P, Guerrero-Ruiz A, Rodriguez-Ramos I, Appl. Catal. A: Gen., 170(1), 177 (1998)
- Song SH, Lee SB, Bae JW, Prasad PSS, Jun KW, Shul YG, Catal. Lett., 129(1-2), 233 (2009)
- Wang SB, Lu GQ, Millar GJ, Energy Fuels, 10(4), 896 (1996)
- Song SH, Lee SB, Bae JW, Sai Prasad PS, Jun KW, Catal. Commun., 9, 2282 (2008)
- Fan MS, Abdullah AZ, Bhatia S, ChemCatChem, 1, 192 (2009)
- Reuel RC, Bartholomew CH, J. Catal., 85, 63 (1984)
- Kogelbauer A, Weber JC, Goodwin JG, Catal. Lett., 34(3-4), 259 (1995)
- Jozwiak WK, Szubiakiewicz E, Goralski J, Klonkowski A, Paryjczak T, Kinet. Catal., 45, 247 (2004)
- Vansteen E, Sewell GS, Makhothe RA, Micklethwaite C, Manstein H, Delange M, Oconnor CT, J. Catal., 162(2), 220 (1996)
- Chin RL, Hercules DM, J. Phys. Chem., 86, 360 (1982)
- Riva R, Miessner H, Vitali R, Del Piero G, Appl. Catal. A: Gen., 196(1), 111 (2000)
- Lapidus A, Krylova A, Kazanskii V, Borovkov V, Zaitsev A, Rathousky J, Zukal A, Jancalkova M, Appl. Catal., 73, 65 (1991)
- Lapidus A, Krylova A, Rathousky J, Zukal A, Jancalkova M, Appl. Catal., 80, 1 (1992)
- Lira E, Lopez CM, Oropeza F, Bartolini M, Alvarez J, Goldwasser M, Linares FL, Lamonier JF, Zurita MJP, J. Mol. Catal. A-Chem., 281(1-2), 146 (2008)
- Jablonski JM, Okal J, Potoczna-Petru D, Krajczyk L, J. Catal., 220(1), 146 (2003)
- Ernst B, Bensaddik A, Hilaire L, Chaumette P, Kiennemann A, Catal. Today, 39(4), 329 (1998)
- Potoczna-Petru D, Jablonski JM, Okal J, Krajczyk L, Appl. Catal. A: Gen., 175(1-2), 113 (1998)
- Petitto SC, Langell MA, J. Vac. Sci. Technol. A, 22(4), 1690 (2004)
- Bradford MC, Vannice MA, Appl. Catal. A: Gen., 142(1), 73 (1996)
- Cotton FA, Wilkinson G, Advanced Inorganic Chemistry, Fifth Ed., A Wiley-Interscience, New York (1988)
- Budiman AW, Song SH, Chang TS, Shin CH, Choi MJ, Catal. Surv. Asia, 16, 183 (2012)