Clean Technology, Vol.20, No.1, 51-56, March, 2014
Polysulfone으로 Al(OH)3를 고정화한 PSf-Al(OH)3 비드에 의한 불소 이온의 제거 특성
Removal Characteristics of Fluoride Ions by PSf-Al(OH)3 Beads Immobilized Al(OH)3 with Polysulfone
E-mail:
초록
본 연구에서는 폴리술폰(polysulfone, PSf)으로 알루미늄 수산화물(aluminum hydroxide, Al(OH)3)을 고정화한 PSf-Al(OH)3 비드를 제조하였다. 제조한 PSf-Al(OH)3 비드에 의한 불소 이온 제거실험은 회분식으로 수행하였으며, pH, 초기농도, 공존 이온과 같은 변수들의 영향을 살펴보았다. Langmuir 등온식으로 구한 불소 이온의 최대 제거량은 52.4 mg/g이었으며, 최적 pH 범위는 4~10이었다. PSf-A (OH)3 비드에 의한 불소 이온의 제거과정은 전 단계에서 외부물질전달이 나중 단계에서 내부확산이 지배인 것을 알 수 있었다. 또한 PSf-Al(OH)3에 의한 불소 이온의 제거에서 HCO3-, SO42-, NO3-, Cl-와 같은 공존 음이온들은 불소 이온의 제거에 방해를 하는 것으로 나타났다.
In this study, PSf-Al(OH)3 beads were prepared by immobilizating aluminum hydroxide Al(OH)3 with polysulfone (PSf). The removal experiments of the fluoride ions by PSf-Al(OH)3 beads were conducted batchwise and the parameters such as pH, initial fluoride concentration, and coexisting ions were investigated. The maximum removal capacity obtained from Langmuir isotherm was 52.4 mg/g and the optimum pH region of fluoride ions was in the range of 4 to 10. The removal process of fluoride ions by PSf-Al(OH)3 beads was found to be controlled by both external mass transfer at the earlier stage followed by internal diffusion at the later stage. The presence of coexisting anions such as HCO3-, SO42-, NO3-, and Cl- had a negative effect on
removal of fluoride ions by PSf-Al(OH)3 beads.
- Sujana MG, Soma G, Vasumathi N, Anand S, J. Fluor. Chem., 130, 749 (2009)
- Park JY, Byun HJ, Choi WH, Kang WH, Chemosphere, 70, 1429 (2008)
- Xiong X, Liu J, He W, Xia T, He P, Chen X, Wang A, Environ. Res. J., 103, 112 (2007)
- Chuang TC, Huang CJ, Liu JC, J. Environ. Eng., 128, 974 (2002)
- Eskandarpour A, Onyango MS, Ochieng A, Asai S, J. Hazard. Mater., 152(2), 571 (2008)
- Ndiayea PI, Moulin P, Dominguez L, Millet JC, Charbit F, Desalination, 173(1), 25 (2005)
- Huang CJ, Liu JC, Water Res., 33, 3403 (1999)
- Hu CY, Lo SL, Kuan WH, Lee YD, Water Res., 39, 895 (2005)
- Castel C, Schweizer M, Simonnot MO, Sardin M, Chem. Eng. Sci., 55(17), 3341 (2000)
- Zhou YM, Yu CX, Shan Y, Sep. Purif. Technol., 36(2), 89 (2004)
- Raichur AM, Basu MJ, Sep. Purif. Technol., 24(1-2), 121 (2001)
- Shimelis B, Zewge F, Chandravanshi BS, Bull. Chem. Sco. Ethiop., 20, 17 (2006)
- Keyser MJ, Conradie M, Coertzen M, Van Dyk JC, Fuel, 85(10-11), 1439 (2006)
- Ganvir V, Das K, J. Hazard. Mater., 185(2-3), 1287 (2011)
- Dou X, Zhang Y, Wang H, Wang T, Wang Y, Water Res., 45, 3571 (2011)
- Wu HX, Wang TJ, Chen L, Jin Y, Zhang Y, Dou XM, Powder Technol., 209(1-3), 92 (2011)
- Ma XJ, Li YF, Li XL, Yang LQ, Wang XY, J. Hazard. Mater., 188(1-3), 296 (2011)
- Mao M, Liu ZB, Wang T, Yu BY, Wen X, Yang KG, Zhao CS, Sep. Sci. Technol., 41(3), 515 (2006)
- Lee MG, Kam SK, Suh KH, J. Environ. Sci. Int., 21, 623 (2012)
- Yao ZY, Qi JH, Wang LH, J. Hazard. Mater., 174(1-3), 137 (2010)
- Furusawa T, Smith JM, Ind. Eng. Chem. Fundam., 12, 197 (1973)
- Sljivic M, Smiciklas I, Plecas I, Pejanovic S, Environ. Technol., 32, 933 (2011)
- Sarkar M, Acharya PK, Bhattacharya B, J. Colloid Interface Sci., 266(1), 28 (2003)
- Jagtap S, Thakre D, Wanjari S, Kamble S, Labhsetwar N, Rayalu S, J. Colloid Interface Sci., 332(2), 280 (2009)