화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.3, 310-317, March, 2014
Bile Acid Conjugated Chitosan Oligosaccharide Nanoparticles for Paclitaxel Carrier
E-mail:,
To develop a paclitaxel carrier based on chitosan, chitosan oligosaccharide (COS) was chemically modified with bile acid (deoxycholic acid and lithocholic acid) as a hydrophobic group. Paclitaxel was loaded in bile acid conjugated chitosan oligosaccharide (CBs) nanoparticles by a dialysis method. We confirmed that the paclitaxel-loaded COS (CBs-Tx) nanoparticles could be successfully prepared with a yield of 80%-90% and paclitaxel encapsulation of 54%-70%. The size of CB nanoparticles was in the range of 200-300 nm, and it increased to 300-400 nm after paclitaxel loading with the narrow size distribution maintained. Paclitaxel-loaded CBs (CBs-Tx) nanoparticles showed remarkably high anticancer activity compared with paclitaxel in cremophore EL (CrEL)-ethanol against B16F10 cells. The antitumor efficacy in vivo was shown with significant inhibition of the tumor growth in both paclitaxel-treated groups. The effect on tumor size by the paclitaxel in the CrEL-ethanol formulation appeared to be slightly larger than that in CBs-Tx. The decrease in cytotoxicity and the increase in antitumor activity may lead to the improvement in the therapeutic index in clinical use compared to commercial paclitaxel. The efficacy of CBs-Tx nanoparticles suggests that bile acid as a hydrophobic group may have a potential application of effectively loading hydrophobic drugs such as paclitaxel.
  1. Adams JD, Flora KP, Goldspiel BR, Wilson JW, Arbuck SG, Finley R, J. Natl. Cancer Inst. Monogr., 15, 141 (1993)
  2. Goldspiel BR, Pharmacotherapy., 17, 110S (1997)
  3. Kataoka K, Haradaa A, Nagasaki Y, Adv. Drug Deliv.Rev., 47, 113 (2003)
  4. Nishiyama N, Kataoka K, Adv. Exp. Med. Biol., 519, 155 (2003)
  5. Kim DG, Jeong YI, Nah JW, J. Appl. Polym. Sci., 105(6), 3246 (2007)
  6. Thunemann AF, Beyermann J, Kukula H, Macromolecules, 33(16), 5906 (2000)
  7. Hejazi R, Amiji M, J. Control. Release., 89, 151 (2003)
  8. Nah JW, Jang MK, J. Polym. Sci. A: Polym. Chem., 40(21), 3796 (2002)
  9. Thanou MJ, Verhoef C, Junginger HE, Adv. Drug Deliv. Rev., 50, S91 (2001)
  10. Illum L, Pharm. Res., 15, 1326 (1998)
  11. Khor E, Lim LY, Biomaterials., 24, 2339 (2003)
  12. Lee M, Nah JW, Kwon Y, Koh JJ, Ko KS, Kim SW, Pharm. Res., 18, 427 (2001)
  13. Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Varum KM, Gene Ther., 8, 1108 (2001)
  14. Roy K, Mao HQ, Huang SK, Leong KW, Nat. Med., 5, 387 (1999)
  15. Kim C, Lee SC, Kang SW, Kwon IC, Kim YH, Jeong SY, Langmuir, 16(11), 4792 (2000)
  16. Huh KM, Lee KY, Kwon IC, Kim YH, Kim C, Jeong SY, Langmuir, 16(26), 10566 (2000)
  17. Chae SY, Son S, Lee M, Jang MK, Nah JW, J.Control. Release., 109, 330 (2005)
  18. Park JK, Kim DG, Choi C, Jeong YI, Kim MY, Jang MK, Nah JW, Polym.(Korea), 32(3), 263 (2008)
  19. Chang Y, Lee SC, Him KT, Him C, Reeves SD, Allcock HR, Macromolecules, 34(2), 269 (2001)
  20. Binana-Limbele W, Zana R, Macromolecules., 20, 1331 (1987)
  21. Magny B, Iliopoulos I, Zana R, Audebert R, Langmuir, 10(9), 3180 (1994)
  22. Kim K, Kim JH, Kim S, Chung H, Choi K, Kwon IC, Park JH, Kim YS, Park RW, Kim IS, Jeong YS, Macromol. Res., 13(3), 167 (2005)
  23. Nah JW, Jeong YI, Cho CS, J. Polym. Sci. B: Polym. Phys., 36(3), 415 (1998)
  24. Kwon S, Park JH, Chung H, Kwon IC, Jeong SY, Kim IS, Langmuir, 19(24), 10188 (2003)
  25. Enhsen A, Kramer W, Wess G, Drug Discov. Today,, 3, 409 (1998)
  26. Allison RC, Carlile PV, Gray BA, Clin. Chest Med., 6, 439 (1985)
  27. Kim K, Kwon S, Park JH, Chung H, Jeong SY, Kwon IC, Biomacromolecules, 6(2), 1154 (2005)
  28. MacLaughlin FC, Mumper RJ, Wang JM, Gill I, Hinchliffe M, Rolland AP, J. Control. Release., 56, 259 (1998)