화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.3, 237-241, June, 2014
망간 기반 촉매상에서의 벤젠의 산화와 오존산화에 대한 최근 연구 동향
Recent Trends on Catalytic Oxidation of Benzene without or with Ozone over Mn-Based Catalysts
E-mail:
초록
벤젠은 발암성을 가진 유해성 대기 오염물질로 특별한 관리가 필요하다. 특히 벤젠은 실외 뿐만 아니라 실내에서도 존재하기 때문에 실내외를 구분하여 적절한 처리 방법이 요구된다. 실외의 공정에서 배출되는 VOC는 촉매 산화법을 통하여 300-400 ℃에서 제거하는 것이 바람직하지만, 실내의 경우는 100 ℃ 이하 혹은 실온에서 제거되는 것이 바람직하다. 본 총설은 촉매산화법, 촉매오존산화법 등 다양한 촉매 벤젠 산화법의 최근 동향을 다루고 있으며, 특히 저온산화반응을 위해 Mn 기반 촉매에 중점을 두고 조사하였다. Mn 기반 촉매는 다른 귀금속 촉매에 비하여 경제적으로 매우 이로우며, 특히 다양한 제조법을 적용하여 보다 효율적인 Mn 기반 벤젠 제거 촉매가 개발되고 있다. 또한 오존을 이용하여 100 ℃ 이하, 특히 상온에서도 효율적으로 벤젠을 제거할 수 있기 때문에, Mn 기반 촉매의 효율성은 더욱 더 증가할 것으로 판단된다.
Benzene is a hazardous air pollutant, classified as carcinogenic to humans, that requires special management. Benzene exists both indoors and outdoors and the control measure of indoor benzene is different from that of outdoor benzene. The removal of indoor benzene needs to be accomplished at low temperatures (normally below 100 ℃), while outdoor benzene is usually removed at much higher temperature (300-400 ℃) by using catalytic oxidation. This review paper summarizes the recent trend in catalytic treatment of airborne benzene, focusing on catalytic oxidation and catalytic ozone oxidation. Particular attention is paid to Mn-based catalysts for low-temperature oxidation of benzene, which are more economical than the other noble-metal catalysts. Various methods are used to generate more efficient Mn-based catalysts for benzene removal. Ozone oxidation is attracting particularly significant attention because it can remove benzene effectively below 100 ℃, even at room temperature.
  1. Tang W, Wu X, Li D, Wang Z, Liu G, Liu H, Chen Y, J. Mater. Chem. A., 2, 2544 (2014)
  2. An HB, Kim JM, Jurng J, Bae GN, Jeon JK, Park SH, Park YK, J. Nanosci. Nanotechol., 13, 7427 (2013)
  3. Raciulete M, Afanasiev P, Appl. Catal. A: Gen., 368(1-2), 79 (2009)
  4. Liu G, Yue R, Jia Y, Ni Y, Yang J, Liu H, Wang Z, Wu X, Chen Y, Particuology, 11, 454 (2013)
  5. Li TY, Chiang SJ, Liaw BJ, Chen YZ, Appl. Catal. B: Environ., 103(1-2), 143 (2011)
  6. Wang Z, Yang M, Shen G, Liu H, Chen Y, Wang Q, Catalytic removal of benzene over CeO2-MnOx composite oxides with rod-like morphology supporting PdO, J. Nanoparticle Res., in press.
  7. Genuino HC, Dharmarathna S, Njaji EC, Mei MC, Suib SL, J. Phys. Chem. C., 116, 12066 (2012)
  8. Einaga H, Futamura S, Catal. Commun., 8, 557 (2007)
  9. Einaga H, Futamura S, J. Catal., 227(2), 304 (2004)
  10. Einaga H, Ogata A, J. Hazard. Mater., 164(2-3), 1236 (2009)
  11. Einaga H, Ogata A, Environ. Sci. Technol., 44, 2612 (2010)
  12. Einaga H, Teraoka Y, Ogat A, Catal. Today, 164(1), 571 (2011)
  13. Einaga H, Teraoka Y, Ogata A, J. Catal., 305, 227 (2013)
  14. Einaga H, Maeda N, Teraoka Y, Appl. Catal. B: Environ., 142, 406 (2013)
  15. Kim JH, Jurng JS, Bae GN, Jeon JK, Jung KY, Kim SC, Yim JH, Park YK, Energy Sources Part A, 36, 866 (2014)
  16. Lee CR, Jurng J, Bae GN, Jeon JK, Kim SC, Kim JM, Jin M, Park YK, J. Nanosci. Nanotechnol., 11, 7303 (2011)
  17. Jin M, Kim JH, Kim JM, Jeon JK, Jurng J, Bae GN, Park YK, Catal. Today, 204, 108 (2013)
  18. Park JH, Kim JM, Jin M, Jeon JK, Kim SS, Park SH, Kim SC, Park YK, Nanoscale Res. Lett., 7, 14 (2012)
  19. Park JH, Kim JM, Jurng J, Bae GN, Park SH, Kim SC, Jeon JK, Park YK, J. Nanosci. Nanotechnol., 13, 423 (2013)
  20. Park JH, Jurng J, Bae GN, Park SH, Jeon JK, Kim SC, Kim JM, Park YK, J. Nanosci. Nanotechnol., 12, 5942 (2012)
  21. Jin M, Kim JW, Kim JM, Jurng J, Bae GN, Jeon JK, Park YK, Powder Technol., 214(3), 458 (2011)