Applied Chemistry for Engineering, Vol.25, No.3, 274-280, June, 2014
폴리설폰 중공사막 구조에 대한 조용매 γ-Butyrolactone 첨가 영향
Effect of Addition of Cosolvent γ-Butyrolactone on Morphology of Polysulfone Hollow Fiber Membranes
E-mail:
초록
비용매 유도 상전이(nonsolvent induced phase separation, NIPS) 방법을 이용하여 PSf (polysulfone) 중공사 분리막을 제조하였다. PSf/DMAc (N,N-dimethylacetamide)로 이루어진 고분자 용액에 조용매로 GBL (γ-butyrolactone)을 첨가하였으며, 물을 응고용액으로 이용하여 중공사 분리막을 제조하였다. 제조된 분리막은 전자주사현미경을 이용하여 그 구조를 분석하였으며 그 결과 GBL의 농도가 증가함에 따라 밀집 구조의 분리활성층과 스폰지 형상의 지지층으로 구성된 이중구조 형태의 비대칭 다공성의 구조를 나타내었다. 또한, 조용매 GBL은 고분자용액의 용해도 상수를 변화시켜 열역학적 상분리 촉진 역할을 할 수 있음을 알 수 있었다. 고분자용액 내의 조용매 GBL의 존재 유무와 GBL의 농도, 첨가제의 농도 그리고 내부응고제의 종류에 따라 중공사 분리막의 구조뿐만 아니라 순수투과도 및 분리특성에도 매우 큰 영향을 미치는 것을 확인하였다. 내부응고제로 EG보다 PEG를 사용하였을 경우 0.05 μm PSL (polystyrene latex) bead를 이용하여 배제 특성을 측정한 결과 5% 정도로 소폭 감소한 반면 순수투과플럭스는 최대 130배 이상 증가하는 효과를 나타내었다.
Polysulfone (PSf) hollow fiber membranes were prepared via the nonsolvent induced phase separation technique. The cosolvent of γ-butyrolactone (GBL) was added to the polymer solution containing a mixture of PSf and N,N-dimethylacetamide(DMAc). Water was utilized as a precipitation nonsolvent. The morphology of prepared membranes was investigated using
a field emission scanning electron microscopy. The fabricated membrane showed a typical asymmetric structure such as the dense layer on the porous support layer by the addition of GBL to the polymer solution. As the concentration of GBL increased, the asymmetric porous structure was shown to be more intensified. It was thought that the added GBL played a role of enhancing the liquid-liquid phase separation of the polymer solution, since the cosolvent of GBL might change the thermodynamic solubility parameter of the doping solution. Permeation properties through the prepared hollow fiber membranes were characterized by measuring the pure water flux and the solute rejection using 0.05 μm polystyrene latex (PSL) beads. Experimental results revealed that the use of PEG as the internal coagulant enhanced the pure water flux up to 130 times compared to the use of EG while the rejection of the PSL beads decreased only 5%.
- Porter MC, “Handbook of industrial membrane technology”, Noyes Publications, 61-110, Park Ridge, New Jersey, USA (1990)
- Lee DH, Kim LH, Chung KY, Membrane Journal, 13, 9 (2003)
- Mosqueda-Jimenez DB, Narbaitz RM, Matsuura T, Chowdhury G, Pleizier G, Santerre JP, J. Membr. Sci., 231(1-2), 209 (2004)
- Altena FW, Smolder CA, Macromolecules, 15, 1491 (1982)
- Boom RM, Wienk IM, J. Membr. Sci., 79, 277 (1992)
- Cohen C, Tanny GB, Prager S, J. Polym. Sci. Polym. Phys., 17, 477 (1979)
- Gaides GE, McHugh AJ, Polymer, 30, 2118 (1989)
- Reuvers AJ, Altena FW, Smolders CA, J. Polym. Sci. Polym. Phys., 24, 793 (1986)
- Munori S, Bottino A, Capannal G, Moretti P, Petit Bon P, Desalination, 70, 265 (1988)
- Kesting RE, Frizsche AK, Murphy MK, Cruse CA, Handermann AC, Malon RF, Moore MD, J. Appl. Polym. Sci., 40, 1557 (1990)
- Kraus MA, Nemas M, Frommer MA, J. Appl. Polym. Sci., 23, 445 (1979)
- Darcovich K, Kutowy O, J. Appl. Polym. Sci., 35, 1769 (1988)
- Kim SR, Lee KH, Jhon MS, J. Membr. Sci., 119(1), 59 (1996)
- Wienk IM, Boom RM, Beerlage MA, Bulte AM, Smolders CA, Strathmann H, J. Membr. Sci., 113(2), 361 (1996)
- Wang IF, Morris RA, Zepf RF, “Highly asymmetric, hydrophilic, microfiltration membrane having large pore diameters”, U. S. Patent 6,565,782 (2003)
- Lee MS, Youm KH, Membrane Journal, 17, 219 (2007)
- Khayet M, Chem. Eng. Sci., 58(14), 3091 (2003)
- Wang DL, Teo WK, Li K, J. Membr. Sci., 204(1-2), 247 (2002)
- Ismail AF, Dunkin IR, Gallivan SL, Shilton SJ, Polymer, 40(23), 6499 (1999)
- Muhammad N, Sinha R, Krishnan E, Patterson C, J. Environ. Eng., 135, 1181 (2009)
- Polymer Handbook, Wiley, NY, USA (1989)
- Vandewitte P, Dijkstra PJ, Vandenberg JW, Feijen J, J. Membr. Sci., 117(1-2), 1 (1996)
- Cooper, “Ultrafiltration Membrane and Application”, 75-157 Plenum Press, NY, USA (1980)
- Sukhishvili SA, Chen Y, Muller JD, Gratton E, Schweizer KS, Granick S, Macromolecules, 35(5), 1776 (2002)