화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.7, 1237-1245, July, 2014
Impact of speciation on CO2 capture performance using blended absorbent containing ammonia, triethanolamine and 2-amino-2-methyl-1-propanol
E-mail:
In our previous study, a high CO2 absorption rate was achieved using a blended absorbent containing AMP, NH3, and TEA. The species of the blended absorbent was determined in this study using 13C nuclear magnetic resonance (NMR) spectroscopy and a modified Kent-Eisenberg model. The carbamate formation constant was also regressed using the model. Bicarbonate and carbonate ions decrease the absorption efficiency and have a positive effect on CO2 stripping. Carbamate has a negative effect on regeneration; a regeneration temperature of 373 K minimized the energy needed. In conclusion, the prediction equation and NMR analysis provide an easy way of determining carbonate group species and carbamate species concentrations, and this method will be helpful in optimizing CO2 capture with blended absorbents.
  1. Choi WJ, Min BM, Shon BH, Seo JB, Oh KJ, J. Ind. Eng. Chem., 15(5), 635 (2009)
  2. Zhang P, Shi Y, Wei J, Zhao W, Qing Y, J. Environ. Sci., 20, 39 (2007)
  3. Choi WJ, Min BM, Seo JB, Park SW, Oh KJ, Ind. Eng. Chem. Res., 48(8), 4022 (2009)
  4. You JK, Park H, Yang SH, Hong WH, Shin W, Kang JK, Yi KB, Kim JN, J. Phys. Chem. B, 112(14), 4323 (2008)
  5. Seo JB, Jeon SB, Kim JY, Lee GW, Jung JH, Oh KJ, J. Environ. Sci., 24, 494 (2012)
  6. Kang MK, Jeon SB, Lee MH, Oh KJ, Korean J. Chem. Eng., 30(6), 1171 (2013)
  7. Tan LS, Shariff AM, Lau KK, Bustam MA, J. Ind. Eng. Chem., 18(6), 1874 (2012)
  8. Anh CK, Lee HW, Chang YS, Han KW, Kim JY, Rhee CH, Chun HD, Lee MW, Park JM, Int. J. Greenhouse Gas Control, 5, 1606 (2011)
  9. Masaki I, Takahiko E, Daisuke S, Mitsubishi Heavy Industries Technical Review, 47, 37 (2010)
  10. Nitta M, Hirose M, Abe T, Furukawa Y, Sato H, Yamanaka Y, Energy Procedia, 37, 869 (2013)
  11. Yang Q, Bown M, Ali A, Winkler D, Puxty G, Attalla M, Energy Procedia, 1, 955 (2009)
  12. Jakobsen JP, Krane J, Svendsen HF, Ind. Eng. Chem. Res., 44(26), 9894 (2005)
  13. Barzagli F, Mani F, Peruzzini M, Energy Environ. Sci., 2, 322 (2009)
  14. Ciftja AF, Ardi H, Silva EF, Svendsen HF, Energy Procedia, 4, 614 (2011)
  15. Francesco B, Fabrizio M, Maurizio P, Int. J. Greenhouse Gas Control, 16, 217 (2013)
  16. Ahn CK, Lee HW, Chang YS, Han K, Kim JY, Rhee CH, Int. J. Greenhouse Gas Control, 5, 1606 (2011)
  17. Ahn CK, Lee HW, Lee MW, Chang YS, Han KR, Rhee CH, Kim JY, Chun HD, Park JM, Energy Procedia, 4, 541 (2011)
  18. Tong D, Trusler JP, Maitland GC, Gibbins J, Fennell PS, Int. J. Greenhouse Gas Control, 6, 37 (2012)
  19. Barzaglia F, Mania F, Peruzzinib M, Int. J. Greenhouse Gas Control, 5, 448 (2011)
  20. Ballard M, Bown M, James S, Yang Q, Energy Procedia, 4, 291 (2011)
  21. Barzagli F, Mani F, Peruzzini M, Energy Environ. Sci., 3, 772 (2010)
  22. Hook RJ, Ind. Eng. Chem. Res., 36(5), 1779 (1997)
  23. Chen CC, Evans LBA, AIChE J., 32, 444 (1986)
  24. Deshmukh RD, Mather AE, Chem. Eng. Sci., 36, 355 (1981)
  25. Kent RL, Eisenberg B, Hydrocarbon Process., 55(2), 87 (1976)
  26. Fouad WA, Berrouk AS, Ind. Eng. Chem. Res., 51(18), 6591 (2012)
  27. Tontlwachwuthlkul P, Meisen A, Lim CJ, J. Chem. Eng. Data, 36, 130 (1991)
  28. Cheng MD, Caparanga AR, Soriano AN, Li MH, J. Chem. Thermodyn., 42(3), 342 (2010)
  29. Guldo S, David WS, Ind. Eng. Chem. Fundam., 22, 239 (1983)
  30. Lee DH, Choi WJ, Moon SJ, Ha SH, Kim IG, Oh KJ, Korean J. Chem. Eng., 25(2), 279 (2008)
  31. Mahdi G, Vahid T, Cirous G, Safekordi AA, Hesam N, Iran. J. Chem. Chem. Eng., 29, 111 (2010)
  32. Kawasuishi K, Prausnitz JM, Ind. Eng. Chem. Res., 26, 1482 (1987)
  33. Ciftja AF, Hartono A, Svendsen HF, Int. J. Greenhouse Gas Control, 16, 227 (2013)
  34. Fouad WA, Berrouk AS, Ind. Eng. Chem. Res., 51(18), 6591 (2012)
  35. Park SH, Kim SH, Min BM, J. Korean Ind. Eng. Chem., 9(1), 107 (1998)
  36. Edwards TJ, Newman J, Prausnitz JM, Am. Inst. Chem. Eng., 21, 248 (1975)
  37. Rumpf B, Maurer G, Ind. Eng. Chem. Res., 32, 1780 (1993)
  38. Morrow JS, Keim P, Gurd FRN, J. Biol. Chem., 249, 7484 (1974)
  39. Zweier JL, Wooten JB, Cohen JS, Biochemistry, 20, 3505 (1981)
  40. Holmes II PE, Naaz M, Poling BE, Ind. Eng. Chem. Res., 27, 3281 (1998)
  41. Choi JH, Oh SG, Yoon YI, Jeong SK, Jang KR, Nam SC, J. Ind. Eng. Chem., 18(1), 568 (2012)
  42. Kim YE, Lim JA, Jeong SK, Yoon Y, Bae ST, Nam SC, Bull. Korean Chem. Soc., 34, 783 (2013)
  43. Arashi N, Oda N, Yamad M, Ota H, Umeda S, Tajika M, Energy Convers. Manage., 38, 63 (1997)
  44. Iliuta I, Larachi F, Sep. Purif. Technol., 86, 199 (2012)
  45. Bougie F, Iliuta MC, Chem. Eng. Sci., 65(16), 4746 (2010)
  46. Kim DY, Lee HM, Min SK, Cho Y, Hwang IC, Han K, Kim JY, Kim KS, J. Phys. Chem. Lett., 2, 689 (2011)
  47. Ho SC, Chen JM, Li MH, J. Chin. Inst. Chem. Eng., 38(3-4), 349 (2007)
  48. Liu JZ, Wang SJ, Svendsen HF, Idrees MU, Kim I, Chen CH, Int. J. Greenhouse Gas Control, 9, 148 (2012)
  49. Budzianowskl WB, Environ. Protect. Eng., 37, 5 (2011)