Applied Surface Science, Vol.285, 907-911, 2013
Dynamic range and sensitivity of field emission pressure sensors with non-silicon membranes
We report on the dynamic range and sensitivity simulations of a functional field emission-based pressure sensor. The device comprises a titanium nitride membrane acting as the anode in front of a flat boron nitride cold cathode emitter. We previously reported the problem of non-linearity of these sensors and studied their performance for different membrane geometries and membranes using different materials such as Si, Ti, Ta, and TiN [N. Badi et al., Appl. Surf. Sci. 256 (2010) 4990-4994]. Of the materials investigated, TiN seems to have the most desirable characteristics with respect to linearity. In this paper we report on the effects of membrane dimensions on the sensor operation. Results show how a sensor having a TiN membrane of standard dimension can be tuned during operation to have maximum dynamic range without affecting the sensitivity. The membrane dimensions have a strong effect on the device dynamic range. Small portions of the entire range could however be selected by changing the device operating voltage. We also have shown that smaller area membranes result in devices with better response in terms of constant sensitivity, as compared to those with thicker membranes. The device can be operated over its entire dynamic range by tuning the operating voltage of the device to keep the sensitivity a constant. (C) 2013 Elsevier B.V. All rights reserved.
Keywords:Electron field emission;Boron nitride;Pressure sensor;Dynamic range and sensitivity;COMSOL multiphysics