화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.6, 1034-1042, December, 1996
수식 졸-겔법에 의한 TiO2-SiO2분체합성 및 광촉매활성
Preparation of TiO2-SiO2 Powder by Modified Sol-Gel Method and their Photocatalytic Activities
초록
DCCA로 1-도데카놀을 이용한 수식 졸-겔법에 의한 TiO2-SiO2계분체를 합성하였으며, 이들 합성분체에 대한 characterization과 광활성촉매에 대해 검토하였다. 500℃까지의 감량변화는 TiO2단독분체가 33.0wt%, TiO2/SiO2의 몰 비가 75/25, 50/50 및 25/75인 분체는 각각 67.0wt%, 70.0wt% 및 73.0wt%, 그리고 SiO2단독분체는 42.5wt%이였다. 이들 탈리는 거의 대부분이 유기물질이였다. 합성직후의 분체는 TiO2단독분체를 제외하고는 무정형화합물이였고, 아나타아제의 루틸로의 상전이는 SiO2에 의해 억제되었다. 합성직후의 분체는 입자의 형태가 관찰되지 않았으나, 600℃, 1시간 가열에 의한 TiO2단독분체, TiO2/SiO2의 몰비가 75/25 및 50/50인 분체는 모두 서브미크론의 입자를 보였으며, 몰비가 25/75의 분체 및 SiO2단독분체는 여전히 벌크상태였다. 비표면적 역시 SiO2의 증가와 함께 증가하였으며, 세공크기 역시 SiO2성분에 의존하였다. 그리고 이들 가열물의 광촉매활성은, TiO2/SiO2의 몰비가 75/25인 분체의 경우, 수소발생량으로 0.240 μmol/h.g-cat.을 나타내었으며, TiO2단독분체의 그것보다는 약 2.6배, 표준광촉매물질인 P-25(Degussa P-25)보다는 약 2.0배 가량 큰 값을 나타냈다.
Various TiO2-SiO2 composite powders were prepared by the modified sol-gel method using 1-dodecanol as DCCA (Dryng Control Chemical Additive ). Their characterizations were carried out and their photocatalytic catalysis was examined on the evolution reaction of hydrogen. The weight losses at 500℃ of only TiO2 and SiO2 powders were 33. 0wt% and 42.5wt%, respectively, and those of the TiO2/SiO2 powders (TiO2/SiO2= 25/75, 50/50 and 75/25) were about 70.0 ± 3.0wt%. The released substances from the powders were almost organic matters. The as-prepared powders except only TiO2 powder were amorphous. Transformation of anatase to rutil was hindered by SiO2 component and the crystallinity of anatase was decreased with increasing SiO2 contents. The as-prepared powders were bulky states. By heating at 600℃ for 1 hr TiO2-SiO2 powders (TiO2=100%, TiO2/SiO2= 75/25, 50/50) showed agglomerates consisted of particles in submicron, but those of TiO2/SiO2= 25/75 and SiO2= 100% were still bulky states. Specific surface area of the powders heat-treated at 600℃ for 1hr was increased with SiO2 concents and their pore sizes were also depended on SiO2 contents. The photocatalytic activity of TiO2/SiO2 = 75/25 heat-treated at 600℃ for 1hr was 0.240mo1/h.g-cat as H2 evolution rate. This value was about 2.0 times that of P-25(Degussa P-25) as a standard photocatalyst.
  1. Kim BK, Kim JH, J. Korean Ind. Eng. Chem., 6(6), 1077 (1995)
  2. 양종규, 김종향, 김병관, 대한환경공학회지, 17, 1279 (1995)
  3. Low GKC, McEvoy SR, Mathews RW, Environ. Sci. Technol., 25, 460 (1991) 
  4. Pelzzetti E, Maurino V, Minero C, Zerbinati O, Borgarello E, Chemosphere, 18, 1437 (1989) 
  5. Pichat P, Oliverira JCD, Maffre JF, Mas D, "The First International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air," (1992)
  6. Pelizzetti E, Carlin C, Minero C, Tratzel M, New J. Chem., 15, 351 (1991)
  7. Pelizzetti E, Borgarello M, Minero C, Pramauro E, Borgarello E, Serpone N, Chemosphere, 17, 499 (1988) 
  8. Kudo A, Tanaka A, Domen K, Maruya K, Aika K, Onishi T, J. Catal., 102, 92 (1988) 
  9. Kawai T, Sakada T, J. Chem. Soc.-Chem. Commun., 694 (1980)
  10. Kawai T, Sakada T, Nature, 286, 474 (1980) 
  11. Borgarello E, Kiwi J, Pelizzetti E, Gratzel M, J. Am. Chem. Soc., 103, 6324 (1981) 
  12. Moser J, Gratzel M, J. Am. Chem. Soc., 105, 6547 (1981) 
  13. Orcel G, Hench LL, Artaki I, Jonas J, Zerda TW, J. Non-Cryst. Solids, 105, 223 (1988) 
  14. Boonstra AH, Bernards TNM, Smits JJT, J. Non-Cryst. Solids, 109, 141 (1989) 
  15. Adachi T, Sakka S, J. Non-Cryst. Solids, 99, 118 (1988) 
  16. Yoldas BE, Am. Ceram. Soc. Bull., 54, 286 (1975)
  17. VanderWoude JHA, DeBruyn PO, Colloids Surf., 12, 79 (1984) 
  18. Nelson RL, Ramsay JDF, Woodhead JL, Cairns JA, Crassley JAA, Thin Solid Films, 81, 329 (1981) 
  19. Partlow DP, O'Keeffe TW, Appl. Opt., 29, 1526 (1990)
  20. Floch HG, Priotton JJ, Thomas IM, Thin Solid Films, 175, 173 (1989) 
  21. Yoldas BE, Appl. Opt., 19, 1425 (1980)