화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.6, 1043-1052, December, 1996
초임계유체 크로마토그래피를 이용한 지방산의 확산특성 해석
Diffusion Characteristics of Fatty Acid using Supercritical Fluid Chromatographic Method
초록
지방산의 분리방법중 증류나 추출 등의 전통적인 방법을 대체할 수 있는 공정으로 초임계유체 크로마토그래피 분리법을 추천할 수 있다. 그러나 지방산을 구성하는 탄소수나 불포화도는 초임계유체내에서 확산특성을 달리 하지만 이들의 정랑적인 데이터가 부족하여 초임계유체 크로마토그래피법을 공정화하는데 큰 어려움이 있다. 본 연구에서는 불포화도를 달리하는 지방산들의 초임계 이산화탄소내 확산계수를 CPB법(capillary peak-broadening method)을 기초로 온도 (308.15∼328.15K)와 압력(13∼17MPa)을 변수로 하여 실험적으로 측정하였다. 이성분계 확산계수는 일정한 온도에서 압력이 증가함에 따라 감소하며 일정한 압력에서 온도가 증가함에 따라 증가하였다. 일정한 밀도에서 온도에 따른 확산계수의 영향은 크지 않으며, 밀도와 점도가 증가함에 따라 확산계수는 감소하였다. 또한 Wilke-Chang식과 Funazukuri의 실험식, Matthews-Akgerman식을 초임계 이산화탄소에서의 이성분계 확산계수에 대한 상관식으로의 이용가능성을 확인한 결과 다른 상관관계식에 비해 RHS(rough hard sphere)에 기초한 자유부피모델인 Matthews-Akgerman식이 잘 일치하는 상관식인 것으로 확인되었다.
Supercritical fluid chromatographic method was recommended as an alternative separation method of fatty acids of the conventional method such as distillation or extraction. Although diffusion characteristics are varied by the carbon numbers and the degree of unsaturation of fatty acids, the quantitative data were so rare that the commercialization of supercritical fluid chromatographic method has been hindered. In this study, diffusion coefficients of fatty acids which are differently unsaturated are measured by CPB method in the range of 308.15K to 328.15K and 13MPa to 17MPa in supercritical carbon dioxide. A decrease in the binary diffusion coefficient was observed with an increase in temperature and pressure. Also, the decrease in the binary diffusion coefficient with increasing fluid density and viscosity. Wilke-Chang equation, Funazukuri empirical equation, and Matthews-Akgerman equation are used to correlate the experimental diffusion coefficients of fatty acids in supercritical carbon dioxide. Among the various theoretical equations, Matthews-Akgerman equation based on RHS theory was suggested as a more successful correlation model with experimental data.
  1. Mead JF, "Lipids," Plenum Press (1986)
  2. Gunstone FD, Norris FA, "Lipids in Foods Chemistry, Biochemistry and Technology," Pergamon (1983)
  3. Bonmati RG, Chapelet-Letourneux G, Margulis JM, Chem. Eng., 70(Mar.), 24 (1980)
  4. vanDeemter JJ, Zuiderweg FJ, Klinkenberg A, Chem. Eng. Sci., 5, 271 (1956) 
  5. Wilke CR, Chang P, AIChE J., 1, 264 (1955) 
  6. Funazukuri T, Ishiwata Y, Wakao N, AIChE J., 38, 1761 (1992) 
  7. Chapman S, Cowling TG, "The Mathematical Theory of Nonuniform Gases," Cambridge University Press, Cambridge (1970)
  8. Dymond JH, J. Chem. Phys., 60, 966 (1974)
  9. Hildebrand JH, Science, 174, 490 (1971) 
  10. Chen SH, Davis HT, Evans DF, J. Chem. Phys., 77, 2540 (1982) 
  11. Matthews MA, Akgerman A, AIChE J., 33, 887 (1987)
  12. Taylor G, Proc. R. Soc. London. Ser. A, 225, 473 (1954)
  13. Aris R, Taylor G, Proc. R. Soc. London. Ser. A, 235, 67 (1956)
  14. Giddings JC, Seager SL, J. Chem. Phys., 33, 1579 (1960)
  15. Alizadeh AC, NietodeCastro A, Wakeham WA, Int. J. Thermophys., 1, 243 (1980) 
  16. Marrero TR, Mason EA, J. Chem. Ref. Data, 1, 3 (1972)
  17. Giddings JC, Seager SL, Ind. Eng. Chem. Fundam., 1, 227 (1962)
  18. Swaid I, Schneider G, Ber. Bunsen-Ges. Phys. Chem., 83, 969 (1979)
  19. Liong KK, Wells PA, Foster NR, Ind. Eng. Chem. Res., 30, 29 (1991) 
  20. Lee JS, Jeon BJ, Jung IH, Hong IK, J. Korean Ind. Eng. Chem., 6(2), 320 (1995)
  21. Debenedetti PG, Reid RC, AIChE J., 32, 2034 (1986) 
  22. Sassiat PR, Mourier P, Caude MH, Rosset RH, Anal. Chem., 59, 1164 (1987) 
  23. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases & Liquids," 4th ed., McGraw-Hill (1987)
  24. Angus S, "International Thermodynamic Tables of the Fluid State Carbon Dioxide," Pergamon Press (1976)
  25. Neufeld PD, Janzen AR, Aziz RA, J. Chem. Phys., 57, 1100 (1972) 
  26. Chung TH, Ajlan M, Lee LL, Starling KE, Ind. Eng. Chem. Res., 22, 671 (1988)