화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.3, 432-437, May, 1999
폴리에틸렌의 열분해 Kinetics
Thermo-Degradation Kinetics of Polyethylene
초록
폴리에틸렌 열분해실험을 반응기 크기가 10 cm3인 스테인레스 스틸 반응기에서 수행하였으며 이때 반응온도는 390∼450℃이었다. 열분해생성물인 반응생성물과 기체생성물을 분리하여 채취하였고 각 생성물의 분자량분포는 HPLC-GPC와 GC분석을 통해 얻었다. 열분해반응의 개시-종료, 전파-비전파반응, 즉 수소탈취반응, 사슬절단, 고분자물질과 라디칼과의 결합반응 등을 설명할 수 있는 random, specific 생성물의 분자량분포에 대한 distribution balance식을 제안하였다. 말단절단 과정에 의해 저분자량의 비응축성 기체생성물(Cl∼C5)이 생성되었으며 이 기체생성물의 평균분자량은 38이었다. 무작위절단과 말단절단의 속도매개변수 중의 하나인 활성화에너지는 각각 35, 17 kcal/mole 이었다.
Pyrolysis of polyethylene was carried out in the stainless steel reactor of internal volume of 10 cm3. Pyrolysis reactions were performed at temperature 390∼450 ℃ and the pyrolysis products were collected separately as reaction products and gas products. The molecular weight distributions(MWDs) of each product were determined by HPLC-GPC and GC analysis. Distribution balance equation for MWDs of random and specific products were proposed to account for initiation-termination and propagation-depropagation, such as hydrogen abstraction, chain cleavage, coupling of polymer and radical. A separate chain-end scission process produces low molecular weight noncondensable gases(Cl through C5) of average molecular weight 38. Activation energies of the random-chain scission and chain-end scission rate parameters, respectively, were determined to be 35, 17 kcal/mole.
  1. Ghim YS, Sun DW, Lee YW, Son JE, Chem. Ind. Technol., 11(4), 238 (1993)
  2. Shabtai J, Xiao X, Zmierczak W, Energy Fuels, 11(1), 76 (1997) 
  3. Ghim YS, HWAHAK KONGHAK, 30(2), 133 (1992)
  4. Kodera Y, Cha WS, McCoy BJ, 214th ACS National Meeting, Sep. 8 ~ 11, Las Vegas, NV, 1003 (1997)
  5. Kodera Y, Mccoy BJ, AIChE J., 43(12), 3205 (1997) 
  6. Westerhout RW, Waanders J, Kuipers JA, Vanswaaij WP, Ind. Eng. Chem. Res., 36(6), 1955 (1997) 
  7. Wang M, Smith JM, Mccoy BJ, AIChE J., 41(6), 1521 (1995) 
  8. Mccoy BJ, Madras G, AIChE J., 43(3), 802 (1997) 
  9. Aris R, Gavalas GR, Phil. Trans. R. Soc. London, A260, 351 (1996)
  10. Madras G, Chung GY, Smith JM, Mccoy BJ, Ind. Eng. Chem. Res., 36(6), 2019 (1997) 
  11. Madras G, Smith JM, McCoy BJ, Polym. Degrad. Stabil., 52, 349 (1996) 
  12. Sezgi NA, Cha WS, Smith JM, McCoy BJ, Ind. Eng. Chem. Res., 37(7), 2582 (1998) 
  13. Mccoy BJ, Chem. Eng. Sci., 51(11), 2903 (1996) 
  14. Cotterman RL, Bender R, Prausnitz JM, Ind. Eng. Chem. Process Des. Dev., 24, 194 (1985) 
  15. Song CS, Lai WC, Schobert HH, Ind. Eng. Chem. Res., 33(3), 534 (1994) 
  16. Kerr JA, Trotman-Dickenson AF, J. Chem. Phys., 19, 163 (1951) 
  17. Lehni M, Schuh H, Fisher H, Int. J. Chem. Kinet., 11, 705 (1979)