Energy Conversion and Management, Vol.76, 691-700, 2013
Detailed analysis for the cooling performance enhancement of a heat source under a thick plate
Maintaining the peak temperature of a heat source under an allowable level has always been a major concern for engineers engaged in the design of cooling systems for electronic equipment. The primary goal of this paper is to examine the advantages and/or disadvantages of placing a conductive thick plate as a heat transfer interface between a heat source and a cold flowing fluid. In such arrangement, the heat source is cooled under the thick plate instead of being cooled in direct contact with the cooling fluid. It is demonstrated that the thick plate can significantly improve the heat transfer between the heat source and the cooling fluid by way of conducting the heat current in an optimal manner. The two most attractive advantages of this method are that no additional pumping power and no extra heat transfer surface area, that is quite different from fins (extended surfaces). Unlike related archival papers in the literature, the present paper allows open spaces toward optimization. The objective is to minimize the maximum temperature, the 'hot spot'. Detailed analytical expressions are presented and a numerical analysis is carried out on the conservation equations based on the SIMPLEC algorithm. It is categorically proved that there exists an optimal thickness of the thick plate, which minimizes the peak temperature. Also, it is shown that the efficiency of the optimized plate on minimizing the target peak temperature depends upon the Reynolds number of the fluid flow and the material thermal conductivity. (C) 2013 Elsevier Ltd. All rights reserved.