Energy Conversion and Management, Vol.76, 701-711, 2013
Energetic and dynamic impact of counterbalance valves in fluid power machines
Counterbalance valves negatively affect the dynamical behavior of most of the hydraulic systems in which they are utilized, and they introduce additional energy consumption. Various valve architectures have been developed to address the dynamical issues related to the use of these components, and empirical guidelines are also available to determine the best value of their set parameters such as the pilot ratio and the setting pressure. However, the problem of characterizing the portion of energy consumption introduced by counterbalance valves in a hydraulic circuit, and how this consumption is related to the valve setting, has never been addressed according to a systematic approach. This paper addresses this problem and proposes a general approach to study the energy consumption introduced by the counterbalance valves for given operating cycles of the machine in which they are used. In particular, a graphical method is utilized to study the effects of counterbalance valves in the whole hydraulic system. This method is also used to interpret the potentials for energy recovery associated with different settings of the counterbalance valves. The basic considerations which can be obtained using a graphical method are then supported by results provided by a more detailed numerical model of a particular reference machine, a hydraulic crane. The numerical model is validated on the basis of experimental results and permits to derive not only considerations about the energy consumption of counterbalance valves, but also their effect in terms of dynamic behavior of the system. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords:Load control valve;Counterbalance valve;Overcenter valve;Energy efficiency;Fluid power;Hydraulic crane