화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.3, 266-270, May, 2000
α-Benzoinoxime에 의한 Molybdenum 침전물의 생성 특성
Formation Property of Molybdenum Precipitate by α-Benzoinoxime
E-mail:
초록
본 연구에서는 Mo을 α-benzoinoxime을 사용하여 침전반응시킬 때 생성되는 α-benoinoxime-Mo 침전물의 특성을 SEM, FTIR, TG/DTA와 XRD를 사용하여 조사하였다. 모의용액은 질산농도 1M, 50ppm Mo로 구성하였으며, 0.4 N NaOH에 용해된 2wc%의 α-benzoinoxime 용액을 첨가하여 침전물을 제조하였다. 생성된 침전물은 α-benzoinoxime-Mo 침전과 Mo의 침전율을 높여주기 위하여 과잉으로 첨가된 α-benzoinoxime의 재침전물로 구성되며 이 중 α-benzoinoxime-Mo 침전은 과산화수소를 첨가하지 않은 0.4 N NaOH 용액으로 5분 내에 용해되어 기존 공정을 개선할 수 있었다. FTIR과 TG-DTA 결과로부터 Mo과 α-benzoinoxime은 두 분자의 α-benzoinoxime과 한 분자의 MoO2+2 이온이 반응하여 α-benzoinoxime-Mo 침전물을 생성하였음을 확인할 수 있었으며, α-benzoinoxime-Mo 침전물은 무정형으로 나타났다.
This study investigated the property of molybdenum precipitate formed with α-benzoinoxime by SEM, FTIR, TG-DTA, and XRD. The precipitate was produced by adding 2 wt%, α-benzoinoxime solution dissolved in 0.4 N NaOH to 1 M nitric acid solution containing 50 ppm molybdeum. The precipitate was composed of α-benzoinoxime-Mo precipitate and re-precipitate of α-benzoinoxime added excessively for increasing precipitation efficiency of molybdenum, α-benzoinoxime-Mo precipitate of these precipitates was dissolved in 0.4 N NaOH solution without hydrogen peroxide within 5 minutes, which proposed the possibility improving the existing process. As results of FTIR and TG-DTA, it was confirmed that α-benzoinoxime-Mo precipitate was formed by reaction of two α-benzoinoxime molecules and one MoO2+2. The form of α-benzoinoxime-Mo precipitate was amorphous.
  1. Langton MA, Trans. Am. Nucl. Soc., 72, 134 (1995)
  2. IAEA, "Fission Molybdenum for Medical Use," IAEA-TECDOC-515 (1989)
  3. Sameh AA, Hans JA, Radiochim. Acta, 41, 65 (1987)
  4. Cheng WL, Lee CS, Chen CC, Ting G, Radiochim. Acta, 47, 69 (1989)
  5. Iturbe JL, Appl. Radiat. Isot., 41(7), 693 (1990)
  6. Gupta AK, Williams ES, Aguwa A, Adsorption Ion Exchange, 78, 103 (1979)
  7. Sameh AA, Hans JA, Radiochim. Acta, 42, 65 (1987)
  8. Ejaz E, Mamoon AM, Qureshi MA, Appl. Radiat. Isto., 39, 1 (1988) 
  9. Wei T, Cheng WL, Ting G, Solvent Extract. Ion Exchange, 2(3), 435 (1984)
  10. Sivaramakrihan CK, Rep. BARC-84 (1976)
  11. Arino H, Cosolito FJ, George KD, Thrnton AK, U.S. Patent, 3,940,318
  12. Cheng WL, Lee CS, Chen CC, Wang YM, Ting G, Appl. Radiat. Isto., 40(4), 315 (1989) 
  13. Knowles H, Bur. Stds. J. Res., 9, 1 (1932)
  14. Jdid E, Blazy P, Ind. Miner. Mines. Carrier Tech., 2, 83 (1989)
  15. Wu D, Landsberger S, Vandegrift GF, J. Radioanal. Nucl. Chem., 216(1), 101 (1997) 
  16. Colthup NB, Daly LH, Wiberley SE, "Introduction to Infrared and Raman Spectroscopy," 3rd ed., Academic Press, San Diego (1990)
  17. Nakamoto K, "Infrared and Raman Spectra of Inorganic and Coordination Compounds," 3rd ed., John Wiley & Sons, New York (1978)