화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.1, 159-167, January, 2015
Experimental and computational investigation of polyacrylonitrile ultrafiltration membrane for industrial oily wastewater treatment
E-mail:
An experimental study on separation of industrial oil from oily wastewater has been done. A polyacrylonitrile membrane with a molecular weight cut-off (MWCO) of 20 kDa was used and an outlet wastewater of API unit of Tehran refinery was employed. The main purpose of this study was to develop a support vector machine model for permeation flux decline and fouling resistance in a cross-flow hydrophilic polyacrylonitrile membrane during ultrafiltration. The operating conditions which have been applied to develop a support vector machine model were transmembrane pressure (TMP), operating temperature, cross flow velocity (CFV), pH values of oily wastewater, permeation flux decline and fouling resistance. The testing results obtained by the support vector machine models are in very good agreement with experimental data. The calculated squared correlation coefficients for permeation flux decline and fouling resistance were both 0.99. Based on the results, the support vector machine proved to be a reliable accurate estimation method.
  1. Cheryan M, Rajagopalan N, J. Membr. Sci., 151, 15 (1998)
  2. Abbasi M, Salahi A, Mirfendereski M, Mohammadi T, Pak A, Desalination, 252(1-3), 113 (2010)
  3. Srijaroonrat P, Julien E, Aurelle Y, J. Membr. Sci., 159(1-2), 11 (1999)
  4. Bai H, Wang X, Zhou Y, Zhang L, J. Prog. Nat. Sci., 250, 3 (2012)
  5. Mohammadi T, Kazemimoghadam M, Saadabadi M, Desalination, 157(1-3), 369 (2003)
  6. Salahi A, Abbasi M, Mohammadi T, Desalination, 251(1-3), 153 (2010)
  7. Yu B, Cong H, Zhao X, J. Prog. Nat. Sci., 22, 662 (2012)
  8. Cheng C, Uhe J, Yang X, Wu Y, Li D, J. Prog. Nat. Sci., 22, 670 (2012)
  9. Dave YG, Reddy AVR, Desalination, 282, 9 (2011)
  10. Yang D, Zhang X, Yuan L, Hu J, J. Prog. Nat. Sci., 19, 1305 (2009)
  11. Xu J, Feng XS, Chen PP, Gao CJ, J. Membr. Sci., 413, 62 (2012)
  12. Hoek EMV, Allred J, Knoell T, Jeong BH, J. Membr. Sci., 314(1-2), 33 (2008)
  13. Tu SC, Ravindran V, Pirbazari M, J. Membr. Sci., 265(1-2), 29 (2005)
  14. Van der Bruggen B, Manttari M, Nystrom M, Sep. Purif. Technol., 63(2), 251 (2008)
  15. Boerlage SFE, Kennedy MD, Bonne PAC, Galjaard G, Schippers JC, Desalination, 113(2-3), 231 (1997)
  16. Yin N, Chen S, Ouyang Y, Tang L, Yang J, Wang H, J. Prog. Nat. Sci., 21, 472 (2011)
  17. Ballo S, Liu M, Hou L, Chang J, J. Prog. Nat. Sci., 19, 873 (2009)
  18. Gunalan S, Sivaraj R, Rajendran V, J. Prog. Nat. Sci., 22, 695 (2012)
  19. Shokrkar H, Salahi A, Kasiri N, Mohammadi T, Chem. Eng. Res. Des., 90(6), 846 (2012)
  20. Hwang TM, Oh H, Choung YK, Oh S, Jeon M, Kim JH, Nam SH, Lee S, Desalination, 247(1-3), 285 (2009)
  21. Liu QF, Kim SH, Lee S, Sep. Purif. Technol., 70(1), 96 (2009)
  22. Madaeni SS, Kurdian AR, Chem. Eng. Res. Des., 89(4A), 456 (2011)
  23. APHA-American Public Health Association/American Water Works Association/Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 20th Ed., Washington DC, USA. (2001)
  24. Abadi SRH, Sebzari MR, Hemati M, Rekabdar F, Mohammadi T, Desalination, 265(1-3), 222 (2011)
  25. Mohammadi T, Esmaeelifar A, J. Membr. Sci., 254(1-2), 129 (2005)
  26. Hearst MA, Dumais ST, Osman E, Platt J, Scholkopf B, IEEE Intell. Syst. Appl., 13, 18 (1998)
  27. Schmidt M, Identifying speaker with support vector networks, In Interface 96 Proceedings, Sydney (1996)
  28. Cristianini N, Taylor JS, An introduction to support vector machine (and other kernel-based learning methods), Cambridge Univ. Press, Cambridge (2000)
  29. Vapnik VN, Statistical learning theory, Wiley, New York (1998)
  30. Pontil M, Verri A, Neural Comput., 10, 955 (1998)
  31. Eslamimanesh A, Gharagheizi F, Illbeigi M, Mohammadi AH, Fazlali A, Richon D, Fluid Phase Equilib., 316, 34 (2012)
  32. Balabin RM, Lomakina EI, Phys. Chem. Chem. Phys., 13, 11710 (2011)
  33. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Least Squares Support Vector Machines, World Scientific, Singapore (2002)
  34. Suykens JAK, Vandewalle J, Neural Process. Lett., 9, 293 (1999)
  35. Pelckmans K, Suykens JAK, Van Gestel T, De Brabanter D, Lukas L, Hamers B, De Moor B, Vandewalle J, LS-SVMlab: a Matlab/C Toolbox for Least Squares Support Vector Machines, Internal Report 02-44, ESATSISTA, K.U. Leuven, Belgium (2002)
  36. Vapnik VN, The Nature of Statistical Learning Theory, 2nd Ed. Springer, New York (1995)
  37. Zhao CY, Zhang HX, Zhang XY, Liu MC, Hu ZD, Fan BT, Toxicol., 217, 105 (2006)
  38. Peng X, Pattern Recog. Lett., 44, 2678 (2011)
  39. Zanghirati G, Zanni L, Parallel Comput., 29, 535 (2003)
  40. Terzica J, Nagarajahb CR, Alamgira M, Sens. Actuators, 161, 278 (2010)
  41. Agarwal S, Saradhi VV, Karnick H, Neurocomputing., 71, 1230 (2008)
  42. Strack R, Kecman V, Strack B, Li Q, Neurocomputing, 59, 101 (2013)
  43. Li DC, Fang YH, Expert. Syst. Appl., 34, 2013 (2008)
  44. Comak E, Arslan A, Expert. Syst. Appl., 35, 564 (2008)
  45. Hwang JP, Park S, Kim E, Expert. Syst. Appl., 38, 8580 (2011)
  46. Salooki MK, Abedini R, Adib H, Koolivand H, Sep. Purif. Technol., 1, 82 (2011)
  47. Adib H, Haghbakhsh R, Saidi M, Takassi MA, Sharifi F, Koolivand M, Rahimpour MR, Keshtkari S, J. Nat. Gas Sci. Eng., 10, 14 (2013)
  48. Haghbakhsh R, Adib H, Keshavarz P, Koolivand M, Keshtkari S, Thermochim. Acta, 551, 124 (2013)