화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.17, No.9, 484-488, September, 2007
Mo 하지층의 첨가원소(Ti) 농도에 따른 Cu 박막의 특성
Characteristic of Copper Films on Molybdenum Substrate by Addition of Titanium in an Advanced Metallization Process
E-mail:
Mo(Ti) alloy and pure Cu thin films were subsequently deposited on Si wafers, resulting in structures. The multi-structures have been annealed in vacuum at for 30 min to investigate the outdiffusion of Ti to Cu surface. Annealing at high temperature allowed the outdiffusion of Ti from the Mo(Ti) alloy underlayer to the Cu surface and then forming on the surface, which protected the Cu surface against plasma during the deposition of on Cu. The formation of layer on the Cu surface was a strong function of annealing temperature and Ti concentration in Mo(Ti) underlayer. Significant outdiffusion of Ti started to occur at when the Ti concentration in Mo(Ti) alloy was higher than 60 at.%. This resulted in the formation of structures. We have employed the as-deposited Cu/Mo(Ti) alloy and the Cu/Mo(Ti) alloy as gate electrodes to fabricate TFT devices, and then measured the electrical characteristics. The annealed Cu/Mo() gate electrode TFT showed the excellent electrical characteristics (, on/off , subthreshold = 0.733.1.13 V/decade), indicating that the use of Ti-rich() alloy underlayer effectively passivated the Cu surface as a result of the formation of on the Cu grain boundaries.
  1. Colgan EG, Fryer PM, Galligan E, Graham W, Horton R, Hunt D, Jenkins L, John R, Koke P, Kuo Y, Latzko K, Libsch J, Lien A, Lovas K, Nywening R, Polastre R, Rothwell ME, Wilson J, Wisnieff R, Wright SL, Proc. of IDW' 03 (Kobe), P. 29. (1996) (1996)
  2. Awaya A, Arita Y, J. Electron. Mater., 21, 959 (1992)
  3. Park YJ, Andleigh VK, Thompson CV, J. Appl. Phys., 85, 3546 (1999)
  4. Itow H, Nakasaki Y, Minamihaba G, Suguro K, Okano H, Appl. Phys. Lett., 63(7), 934 (1993)
  5. Aubel O, Bugiel E, Kruger D, Hasse W, Hommel M, Microelectronics Reliability, 46, 768 (2006)
  6. Harper JME, Gupta J, Smith DA, Chang JW, Holloway KL, Cabral Jr C, Tracy DP, Knorr DB, Appl. Phys. Lett., 65, 177 (1994)
  7. Lee WH, Ko YK, Jang JH, Kim CS, Reucroft PJ, Lee JG, J. Electron. Mater., 30, 1042 (2001)
  8. Cabral Jr C, Harper JME, Holloway K, Smith DA, Schad RG, J. Vac. Sci. Technol. A, 10, 1706 (1992)
  9. Barmak K, Lucadamo GA, Cabral Jr C, Lavoie C, Harper JME, J. Appl. Phys., 87, 2204 (2000)
  10. Zhang SL, Harper JME, D'Heurle FM, J. Electron, Mater., 30, 59 (2001)
  11. Isobayashi A, Enomoto Y, Yamada H, Takahashi S, Kadomura S, Proceedings of the 2004 International Electron Device Meeting, IEDM, San Francisco, CA, Dec 13-15, p. 953. (2004) (2004)
  12. Hong SJ, Lee S, Yang HJ, Lee HM, Ko YK, Hong HN, Soh HS, Kim CK, Yoon CS, Ban KS, Lee JG, Semicond. Sci. Technol., 19, 1315 (2004)