화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.27, No.1, 33-40, February, 2015
Structural analysis of gluten-free doughs by fractional rheological model
E-mail:
This study examines the effects of various components of tested gluten-free doughs, such as corn starch, amaranth flour, pea protein isolate, and cellulose in the form of plantain fibers on rheological properties of such doughs. The rheological properties of gluten-free doughs were assessed by using the rheological fractional standard linear solid model (FSLSM). Parameter analysis of the Maxwell-Wiechert fractional derivative rheological model allows to state that gluten-free doughs present a typical behavior of viscoelastic quasi-solid bodies. We obtained the contribution dependence of each component used in preparations of gluten-free doughs (either hard-gel or soft-gel structure). The complicate analysis of the mechanical structure of gluten-free dough was done by applying the FSLSM to explain quite precisely the effects of individual ingredients of the dough on its rheological properties.
  1. Alcoutlabi M, Martinez-Vega JJ, Polymer, 39(25), 6269 (1998)
  2. Edwards NM, Dexter JE, Scanlon MG, Cenkowski S, Cereal Chem., 76, 638 (1999)
  3. Edwards NM, Peressini D, Dexter JE, Mulvaney SJ, Rheol. Acta, 40(2), 142 (2001)
  4. Edwards NM, Mulvaney SJ, Scanlon MG, Dexter JE, Cereal Chem., 80, 755 (2003)
  5. Fasano A, Catassi C, Gastroenterology, 120, 636 (2001)
  6. Gallagher E, Gormley TR, Arendt EK, Trends Food Sci. Technol., 15, 143 (2004)
  7. Gujral HS, Guardiola I, Carbonell JV, Rosell CM, J. Agric. Food Chem., 51, 3814 (2003)
  8. Haque A, Morris ER, Food Res. Int., 27, 379 (1994)
  9. Ikeda S, Nishinari K, Food Hydrocoll., 15, 401 (2001)
  10. Janssen AM, van Vliet T, Vereijken JM, J. Cereal Sci., 23, 43 (1996)
  11. Kagnoff MF, J. Clin. Invest., 117, 41 (2007)
  12. Korus J, Witczak M, Ziobro R, Juszczak L, Food Hydrocoll., 23, 988 (2009)
  13. Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG, J. Food Eng., 79(3), 1033 (2007)
  14. Lee CC, Mulvaney SJ, J. Agric. Food Chem., 51, 2317 (2003)
  15. Magalotti D, Volta U, Bonfiglioli A, Ramilli S, Berzigotti A, Zoli M, Dig. Liver Dis., 35, 262 (2003)
  16. Mariotti M, Lucisano M, Pagani MA, Ng P, Food Res. Int., 42, 963 (2009)
  17. Mours M, Winter HH, Macromolecules, 29(22), 7221 (1996)
  18. Neuhausen SL, Feolo M, Camp NJ, Farnham J, Book L, Zone JJ, Am. J. Med. Genet., 111, 1 (2002)
  19. Orczykowska M, Dziubinski M, Chem. Proc. Eng., 33, 141 (2012)
  20. Phan-Thien N, Safari-Ardi M, J. Non-Newton. Fluid Mech., 74(1-3), 137 (1998)
  21. Pruska-Kedzior A, Application of phenomenological rheology methods to quantification of wheat gluten viscoelastic properties (in Polish). Scientific Monographs, Vol. 373, The Agricultural University, Poznan. (2006)
  22. Reyes-Melo ME, Martinez-Vega JJ, Guerrero-Salazar CA, Ortiz-Mendez U, J. Optoelectron. Adv. Mat., 6, 1037 (2004)
  23. Rosell CM, Rojas JA, Benedito de Barber C, Food Hydrocoll., 15, 75 (2001)
  24. Safari-Ardi M, Phan-Thien N, Cereal Chem., 75, 80 (1998)
  25. Shen JJ, Li CG, Wu HT, Kalantari M, Korea-Aust. Rheol. J., 25(2), 87 (2013)
  26. Shen ZL, Kahn H, Ballarini R, Eppell SJ, Biophys. J., 100, 3008 (2011)
  27. Sivaramakrishnan HP, Senge B, Chattopadhyay PK, J. Food Eng., 62(1), 37 (2004)
  28. Stern M, Ciclitira PJ, van Eckert R, Feighery C, Janssen W, Mendez E, Mothes T, Troncone R, Wieser H, Eur. J. Gastroenterol. Hepatol., 13, 741 (2001)
  29. Wang X, Schoen JA, Rentschler ME, J. Mech. Behav. Biomed. Mater., 20, 126 (2013)
  30. Weipert D, Cereal Chem., 67, 311 (1990)
  31. Ziobro R, Witczak M, Juszczak L, Korus J, Food Hydrocoll., 32, 213 (2013)