Korea-Australia Rheology Journal, Vol.27, No.1, 41-53, February, 2015
On the origin of viscoelastic Taylor-Couette instability resulted from normal stress differences
E-mail:
In this paper, the effect of normal stress differences on the viscoelastic Taylor-Couette instability is studied numerically. The governing equations are discretized using FTCS finite difference method on a staggered mesh based on the artificial compressibility algorithm. Using the CEF model as the constitutive equation and the Carreau-Yasuda model as the viscometric functions, the flow between rotating cylinders has been studied for a range of radius ratios, Taylor numbers and rheological properties. It is shown that increasing the first normal stress difference destabilizes the flow field while increasing the negative second normal stress difference stabilizes the flow field. The main contribution of the current study is an answer to this question: How do the first and second normal stress differences affect the stability of viscoelastic flow
between rotating cylinders? For this reason, we used the order of magnitude technique to obtain a force balance relation in the core region of flow. Based on this relation and numerical simulation, the origin of viscoelastic Taylor-Couette instability resulted from normal stress differences are studied in detail. Furthermore, a two dimensional analytical solution for the main flow velocity component between finite rotating cylinders is carried out considering the end effect of stationary walls.
Keywords:Taylor-Couette instability;viscoelastic fluid;normal stress differences;rotating cylinders;secondary flows
- Alziary de Roquefort T. Grillaud G, Comput. Fluids, 6, 259 (1978)
- Apostolakis MV, Mavrantzas VG, Beris AN, J. Non-Newton. Fluid Mech., 102(2), 409 (2002)
- Avgousti M, Beris AN, J. Non-Newt. Fluid, 50, 225 (1993)
- Baumert BM, Liepmann D, Muller SJ, J. Non-Newton. Fluid Mech., 69(2-3), 221 (1997)
- BAUMERT BM, MULLER SJ, Rheol. Acta, 34(2), 147 (1995)
- Baumert BM, Muller SJ, Phys. Fluids, 9, 566 (1997)
- Baumert BM, Muller SJ, J. Non-Newton. Fluid Mech., 83(1-2), 33 (1999)
- Beard D, Davies M, Walters K, J. Fluid. Mech., 24, 321 (1966)
- Bird RB, Armstrong RC, Hassager O, Dynamics of Polymeric Liquids, fluid dynamics, Vol. 1, second ed., Wiley, New York (1987)
- Bird RB, Wiest JM, Annu. Rev. Fluid Mech., 27, 169 (1995)
- Bronshtein I, Semendyaev K, Handbook of mathematics, Moscow: Nauka, 40-80. (1980)
- Caton F, J. Non-Newt. Fluid, 134, 148 (2006)
- Chorin AJ, J. Comput. Phys., 2, 12 (1967)
- Chossat P, Iooss G, The Couette-Taylor problem, Springer (1994)
- Coronado-Matutti O, Mendes PS, Carvalho M, J. Fluid. Eng-T ASME, 126, 385 (2004)
- Couette MFA, Etudes sur le frottement des liquides, PhD diss. (1890)
- Cruz DOA, Pinho FT, J. Non-Newton. Fluid Mech., 121(1), 1 (2004)
- Dumont E, Fayolle F, Sobolik V, Legrand J, Int. J. Heat Mass Transf., 45(3), 679 (2002)
- Ginn R, Denn M, AIChE J., 15, 450 (1969)
- Hoffmann KA, Computational fluid dynamics for engineers, EES, Texas (1989)
- Huang X, PhanThien N, Tanner RI, J. Non-Newton. Fluid Mech., 64(1), 71 (1996)
- Jeng J, Zhu KQ, J. Non-Newton. Fluid Mech., 165(19-20), 1161 (2010)
- Kupferman R, J. Comput. Phys., 147, 22 (1998)
- Larson R, Rheol. Acta, 28, 504 (1989)
- Larson R, Rheol. Acta, 31, 213 (1992)
- Larson R, Muller S, Shaqfeh E, J. Fluid. Mech., 218, 573 (1990)
- LARSON RG, MULLER SJ, SHAQFEH ESG, J. Non-Newton. Fluid Mech., 51(2), 195 (1994)
- Lockett T, Richardson S, Worraker W, J. Non-Newt. Fluid, 43, 165 (1992)
- Muller S, Shaqfeh E, Worraker W, J. Non-Newt Fluid, 46, 315 (1993)
- Northey PJ, Armstrong RC, Brown RA, J. Non-Newt. Fluid, 42, 117 (1992)
- Norouzi M, Kayhanm MH, Nobari MRH, Demneh MK, World Acad. Sci. Eng. Technol., 56, 327 (2009)
- Norouzi M, Kayhani MH, Shu C, Nobari MRH, J. Non-Newton. Fluid Mech., 165(7-8), 323 (2010)
- Norouzi M, Nobari MRH, Kayhani MH, Talebi F, Int. J. Non-Linear Mech., 47, 14 (2012)
- Poncet S, Haddadi S, Viazzo S, Int. J. Heat. Fluid. Fl., 32, 128 (2011)
- Qi H, Jin H, Acta. Mech. Sinica, 22, 301 (2006)
- Ravanchi MT, Mirzazadeh M, Rashidi F, Int. J. Heat. Fluid. Fl., 28, 838 (2007)
- Renardy M, Renardy Y, Sureshkumar R, Beris AN, J. Non-Newton. Fluid Mech., 63(1), 1 (1996)
- Rossi LF, McKinley G, Cook LP, J. Non-Newton. Fluid Mech., 136(2-3), 79 (2006)
- Tagg R, Nonlinear Sci. Today, 4, 1 (1994)
- Tanner RI, Engineering rheology, Oxford University Press, Melbourne (2000)
- Taylor GI, Philos. T. Roy. Soc. A., 289 (1923)
- Thomas DG, Al-Mubaiyedh UA, Sureshkumar R, Khomami B, J. Non-Newton. Fluid Mech., 138(2-3), 111 (2006)