- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.15, No.6, 361-369, June, 2005
고출력 저에너지 이온빔을 이용한 InP(100) 표면의 나노 패턴형성
Fabrication of Nanostructures on InP(100) Surface with Irradiation of Low Energy and High Flux Ion Beams
E-mail:
InP(100) crystal surface was irradiated by ion beams with low energy [Math Processing Error] and high flux [Math Processing Error] , Self-organization process induced by ion beam was investigated by examining nano structures formed during ion beam sputtering. As an ion source, an electrostatic closed electron Hall drift thruster with a broad beam size was used. While the incident angle [Math Processing Error] , ion flux (J), and ion fluence [Math Processing Error] were changed and InP crystal was rotated, cone-like, ripple, and anistropic nanostrucuture formed on the surface were analyzed by an atomic force microscope. The wavelength of the ripple is about 40 nm smaller than ever reported values and depends on the ion flux as [Math Processing Error] , which is coincident with the B-H model. As the incident angle is varied, the root mean square of the surface roughness slightly increases up to the critical angle but suddenly decreases due to the decrease of sputtering yield. By the rotation of the sample, the formation of nano dots with the size of [Math Processing Error] is clearly observed.
Keywords:Closed electron Hall drift thruster;surface energy;surface modification by low energy ion beam;x-ray photoelectron;nanostructure
- Karen A, Okuno K, Soeda F, Ishitani A, J. Vac. Sci. Technol. A, 9, 2247 (1991)
- Homma Y, Kurosawa S, Yoshioka Y, Shibata M, Nomura K, Nakamura Y, Anal. Chem., 57, 2928 (1985)
- Leta DP, Morrison GH, Anal. Chem., 52, 514 (1980)
- Habenicht S, Lieb KP, Koch, Wieck AD, Phys. Rev. B, 65, 115327 (2002)
- Navez M, Sella C, Chaperot D, Comp. Rend, 254, 240 (1962)
- Carter G, Nobes MJ, Paton F, Williams JS, Radiat. Eff., 33, 65 (1977)
- Demanet CM, Sanker KV, Malherbe JB, Surf. lnterface Anal., 24, 503 (1996)
- Habenicht S, Phys. Rev. B, 63, 125429 (2001)
- Sigmund P, Phys. Rev., 184, 383 (1969)
- Sigmund P, J. Mat. Sci., 8, 1545 (1973)
- Bradley RM, Harper JME, J. Vac. Sci. Technol. A, 6, 2390 (1988)
- Umbach CC, Headrick RL, Chang KC, Phy. Rev. Lett., 87, 246104 (2001)
- Makeev MA, Barabsi AL, Appl. Phys. Lett, 71, 2800 (1997)
- Facsko S, Dekorsy T, Koerdt C, Tappe C, Kurz H, Vogt A, Hartnagel HL, Science, 285, 1551 (1999)
- Frost F, Ziberi B, Hoche T, Rauschenbach B, Nucl. Instrum. Methods. B, 216, 9 (2004)
- Gago R, Vazquez L, Cuemo R, Varela M, Ballesteros C, Albella JM, Appl. Phys. Lett., 78, 3316 (2001)
- Malherbe JB, Van der Berg NG, Claudel F, Osman SOS, Odentaal RQ, Krok F, Szymonski M, Nucl. Instrum. Methods. B, 230, 533 (2005)
- Frost F, Schindler A, Bigl F, Phys. Rev. Lett, 85, 4116 (2000)
- Yubas Y, Hazama S, Gamo K, Nucl. Instrum. Methods. B, 206, 648 (2003)
- Morozov AI, Melikov IV, J. Tech. Phys., 44, 544 (1974)
- Cuerno R, Barabasi AL, Pgys. Rev. Lett., 74, 4746 (1995)
- Nozu M, Tanemura M, Okuyama F, Surf. Sci. Lett., 304, L468 (1994)
- Vajo JJ, Doty RE, Cirlin EH, J. Vac. Sci. Technol. A, 14(5), 2709 (1996)
- Stevie FA, Kahora PM, Simons DS, Chi P, J. Vac. Sci. Teshnol. A, 6, 2390 (1988)
- Demanet CM, Malherbe JB, Van der Berg NG, Sankar KV, Surf. Unterf. Anal., 23, 433 (1995)
- Witcomb MJ, J. Mater. Sci., 9, 1227 (1974)
- Carter G, Navins B, Whitton JL, Sputtering by Particle Bombardment II, p. 231, Springer-Verlag, Berlin, Germany (1991) (1991)