화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.14, No.12, 829-834, December, 2004
Cu(B)/Ti/SiO 2 구조를 열처리할 때 일어나는 미세구조 변화에 미치는 Ti 하지층 영향
Effects of Ti Underlayer on Microstructure in Cu(B)/Ti/SiO 2 Structure upon Annealing
E-mail:
Annealing of Cu(B)/Ti/SiO 2 in vacuum has been carried out to investigate the effects of Ti underlayer on microstructure in Cu(B)/Ti/SiO 2 structures. For comparison, Cu(B)/Ti/SiO 2 structures was also annealed in vacuum. Three different temperature dependence of Cu growth can be seen in Cu(B)/Ti/SiO 2 ; B precipitates- pinned grain growth, abnormal grain growth, normal grain growth. The Ti underlayer having a strong affinity for B atoms reacts with the out-diffused B to the Ti surface and forms titanium boride at the Cu-Ti interface. The formation of titanium boride acts as a sink for the out-diffusion of B atoms. The depletion of boron in grain boundaries of Cu films, as results of the rapid diffusion of B along the grain boundaries and the insufficient segregation of B to the grain boundaries, induces grain boundaries to migrate and causes the abnormal grain growth. The increased bulk diffusion coefficient of B within Cu grains can be responsible for the normal grain growth occurring in the annealed Cu(B)/Ti/SiO 2 at600 ? C . In contrast, the Cu/SiO 2 structures show only the abnormal growth of grains and their sizes increasing as the temperature increases above 400 ? C .
  1. Awaya N, Arita Y, J. Electron. Mater., 21, 959 (1992)
  2. Jain A, Kodas TT, Jairath R, Hampdensmith MJ, J. Vac. Sci. Technol. B, 11(6), 2107 (1993)
  3. Lin J, Chen M, Jpn. J. Appl. Phys., 38, 4863 (1999)
  4. Murarka SP, Hymes S, Crit. Rev. Solid State Mater. Sci., 20, 87 (1995)
  5. Park YJ, Andleigh VK, Thompson CV, J. Appl. Phys., 85, 3546 (1999)
  6. Whitman C, Moslehi MM, Paranjpe A, Velo L, Omstead T, J. Vac. Sci. Technol. A, 17(4), 1893 (1999)
  7. Kim JW, Mimura K, Isshiki M, Applied Surface Science, 217 (2003)
  8. Lee WH, Cho BS, Kang BJ, Yang HJ, Lee JG, Woo IK, Lee SW, Jang J, Chae GS, Soh HS, Appl. Phy. Lett., 79, 24 (2001)
  9. Harper JME, Gupta J, Smith DA, Chang JW, Holloway KL, Cabral C, Jr, Tracy DP, Knorr DB, Appl. Phys. Lett., 65(2), 11 (1994)
  10. Hong SJ, Lee S, Yang HJ, Lee HM, Ko YK, Hong HN, Soh HS, Kim CK, Yoon CS, Ban KS, Lee JG, Semicond. Sci. Technol., 19 (2004)
  11. Fried Sauert, Ernst Schultze-Rhonhof and Wang Shu Sheng, Thermochemical Data of Pure Substrances (Brain, Ihsan) (1989) (1989)
  12. Tu KN, Mayer JW, Feldman LC, Electronic Thin Film Science (Macmillan Publishing Company) (1992) (1992)
  13. Harper JME, Cabral C, Jr, Andricacos PC, Gignac L, Noyan IC, Rodbell KP, Hu CK, J. Appl. Phys., 86(5) (1999)
  14. Chou TC, Wong CY, Tu KN, J. Appl. Phys., 62 (1987)