Chemical Physics Letters, Vol.612, 240-244, 2014
Electrochemical reduction of an anion for ionic-liquid molecules on a lithium electrode studied by first-principles calculations
We report ab initio molecular dynamics studies with electric field that reveal chemical stability of room temperature ionic liquid for charge transfer from lithium and nickel electrodes. Bis(trifluoromethanesulfonyl)imide (TFSI) is oxidized on the nickel electrode under a high positive bias condition as expected. However, TFSI is reduced on the lithium electrode under both positive and negative bias conditions, because the lithium electrode acts as a strong reductant. The decomposition of TFSI anion might induce the formation of LiF as a solid electrolyte interphase, which could restrain the TFSI reduction. The stability of an cation under reductant conditions is presented. (C) 2014 Elsevier B.V. All rights reserved.