Korean Journal of Chemical Engineering, Vol.32, No.4, 694-701, April, 2015
Enhanced bio-ethanol production via simultaneous saccharification and fermentation through a cell free enzyme system prepared by disintegration of waste of beer fermentation broth
E-mail:
Current study illustrates the effect of high yeast cell density contained in the waste of beer fermentation broth (WBFB) on bio-ethanol production through simultaneous saccharification and fermentation (SSF). WBFB was disintegrated (DW) and comparatively evaluated against nondisintegrated WBFB (NDW) for bio-ethanol production at variant temperatures. Final bio-ethanol levels of 36.38 g/L and 18.65 g/L at 30 ℃, 4.45 g/L and 43.23 g/L at 40 ℃, and 2.32 g/L and 6.83 g/L at 50 ℃ were achieved with 20% NDW and DW, respectively, after 12 h. DW carried out the simultaneous saccharification and fermentation (SSF) process through cell free enzyme system and was capable of bioethanol production beyond the microbial growth temperature (>30 ℃) of NDW system. The increase in sediment concentration in DW positively influenced the production capabilities of the system producing 43.23 g/L, 54.39 g/L and 62.82 g/L bio-ethanol with 20, 30 and 40% sediments at 40 ℃, respectively. The retardation of bioethanol production at
elevated temperature (50 ℃) was expected to be caused by denaturing or digesting of certain enzymes as observed through SDS-PAGE. FTIR analysis also showed the appearance of a new band at approximately 1,590 cm-1 due to unfolding of polypeptide chains at 50 ℃. The overall study reveals the positive influence of increased cell density on ethanol production and presents evidence for decreased fermentation beyond certain temperature limits.
Keywords:Bio-ethanol;Disintegration;Cell-free Enzyme System;Saccharification;Glycolytic;Fermentation
- Prasetyo J, Park EY, Korean J. Chem. Eng., 30(2), 253 (2013)
- Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Jonsson LJ, Enzyme Microb. Technol., 31(3), 274 (2002)
- Krishna SH, Prasanthi K, Chowdary GV, Ayyanna C, Process Biochem., 33(8), 825 (1998)
- Ayeni AO, Omoleye JA, Mudliar S, Hymore FK, Pandey RA, Korean J. Chem. Eng., 31(7), 1180 (2014)
- Prasetyo J, Park EY, Korean J. Chem. Eng., 30(2), 253 (2013)
- He M, Qin H, Yin X, Ruan Z, Tan F, Wu B, Shui Z, Dai L, Hu Q, Korean J. Chem. Eng., DOI: 10.1007/s11814-014-0108-1 (2014)
- Ravikumar R, Ranganathan BV, Chathoth KN, Gobikrishnan S, Korean J. Chem. Eng., 30(5), 1051 (2013)
- Khattak WA, Khan T, Ha JH, Ul-Islam M, Kang MK, Park JK, Enzyme Microb. Technol., 53(5), 322 (2013)
- Nancy WYH, Chen Z, Brainard AP, Sedlak M, Adv. Biochem. Eng. Biotechnol., 64, 163 (1999)
- Welch P, Scopes RK, J. Biotechnol., 2, 257 (1985)
- Scopes RK, Biochem. J., 161, 265 (1977)
- Khattak WA, Ul-Islam M, Ullah MW, Yu B, Khan S, Park JK, Process Biochem., 49, 357 (2014)
- Ha JH, Shah N, Ul-Islam M, Park JK, Enzyme Microb. Technol., 49(3), 298 (2011)
- Ha JH, Gang MK, Khan T, Park JK, Korean J. Chem. Eng., 29(9), 1224 (2012)
- Khattak WA, Kang M, Ul-Islam M, Park JK, Bioprocess. Biosyst. Eng., 36, 737 (2013)
- Kushnirov VV, Yeast, 16, 857 (2000)
- Conzelmann A, Riezman H, Desponds C, Bron C, Embo J., 7, 2233 (1988)
- Horwath A, Riezman H, Yeast, 10, 1305 (1994)
- Riezman H, Hase T, Apgm VL, Grivell LA, Suda K, Schatz G, Embo J., 2, 2161 (1983)
- Khattak WA, Ul-Islam M, Park JK, Korean J. Chem. Eng., 29(11), 1467 (2012)
- Tilman A, Wolf DH, Yeast, 1, 139 (1985)
- Berg JM, Tymoczko JL, Stryer L, Biochemistry, 5th Ed., Freeman WH, New York (2002). (2002)
- Algar EM, Scopes RK, J. Biotechnol., 2, 275 (1985)
- Blinova K, Carroll S, Bose S, Smirnov AV, Harvey JJ, Knutson JR, Biochemistry, 44, 2585 (2005)
- Shuler ML, Kargi F, Bioprocess Engineering: Basic concepts, Prentice Hall, New Jersey (2001). (2001)
- Postmus J, Canelas AB, Bouwman J, Bakker BM, Gulik WV, de Mattos MJ, J. Biol. Chem., 283, 23524 (2008)
- Cruz ALB, Hebly M, Duong GH, Wahl SA, Pronk JT, Heijnen JJ, BMC Syst. Biol., 6, 151 (2012)
- Silverthorn DU, Human Physiology: An Integrated Approach, Addison-Wesley, Boston (2004). (2004)
- Kwon SC, Park SJ, Cho JM, J. Ind. Microbiol. Biotechnol., 17, 30 (1996)
- Rikimaru H, Stanford N, Stein WH, J. Biol. Chem., 248, 2296 (1973)
- San CC, Rong YT, Yuan CH, J. Food Biochem., 2, 349 (1978)
- Dong A, Caughey B, Caughey WS, Bhat KS, Coe JE, Biochemistry, 31, 9364 (1992)
- Susi H, Byler DM, Methods Enzymol., 130, 290 (1986)
- Byler DM, Susi H, Biopolymers, 25, 469 (1986)
- Haris PI, Severcan F, J. Mol. Catal. B-Enzym., 7, 207 (1999)
- Elliott A, Ambrose EJ, Nature, 165, 921 (1950)
- Krimm S, Bandekar J, Adv. Protein Chem., 38, 181 (1986)
- Banker J, Biochem. Biophys. Acta, 1120, 23 (1992)
- Miyazawa T, J. Chem. Phys., 32, 1647 (1960)
- Jin YG, Fu WW, Ma MH, Afr. J. Biotechnol., 10, 10204 (2011)
- Wang WH, Li XP, Zhang XQ, Pigm. Resin. Technol., 37, 93 (2008)
- Kong J, Yu S, Acta. Bioch. Bioph. Sin., 39, 549 (2007)
- Wilhelmus MMM, de Waal RMW, Verbeek MM, J. Mol. Neurobiol., 35, 203 (2007)
- Gomez ME, Igartuburu JM, Pando E, Luis FR, Mourente G, J. Agr. Food Chem., 52, 4791 (2004)