화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.3, 506-513, May, 2015
Ethylidene Norbornene/endo-Dicyclopentadiene 블렌드의 경화 거동 및 인장 특성
Cure Behavior and Tensile Properties of Ethylidene Norbornene/endo-Dicyclopentadiene Blends
E-mail:
초록
Ethylidene norbornene(ENB)과 endo-dicyclopentadiene(endo-DCPD) 블렌드를 1st generation과 2nd generation Grubbs 촉매 하에서 ring-opening metathesis polymerization(ROMP)으로 제조하였다. ROMP 과정을 이해하기 위하여 시차주사열분석기(DSC)로 동적 발열거동을 분석하였으며, 반응 후 만능시험기(UTM)로 인장특성을 조사하였다. 반응속도는 endo-DCPD의 양이 적을수록 그리고 2nd generation 촉매 하에서 더 빨라졌다. 또한 endo-DCPD를 첨가 할수록 그리고 1st generation 촉매 시스템에서 인장탄성률과 강도는 더 높은 값을 보였으나 강인성은 감소하였다. 이와 같은 인장특성의 변화를 젤 분율 측정과 파단면 관찰을 통하여 자세히 설명하였다.
Ethylidene norbornene (ENB) and its blends with endo-dicyclopentadiene (endo-DCPD) were prepared and reacted via the ring-opening metathesis polymerization (ROMP) reaction with the 1st and 2nd generation Grubbs' catalysts. Dynamic exothermic behaviors during ROMP and tensile properties after ROMP were evaluated using a differential scanning calorimeter (DSC) and a universal testing machine (UTM) for the samples, respectively. It revealed that the ROMP rate was accelerated with the less contents of endo-DCPD and under the 2nd generation catalyst. Also, the addition of endo-DCPD and the 1st generation catalyst resulted in higher tensile modulus and strength but lower toughness. Gel fraction measurement and fracture surface observation were made to understand the tensile properties.
  1. Buchmeiser MR, Chem. Rev., 100(4), 1565 (2000)
  2. Weck M, Jackiw JJ, Rossi RR, Weiss PS, Grubbs RH, J. Am. Chem. Soc., 121(16), 4088 (1999)
  3. Trnka TM, Grubbs RH, Acc. Chem. Res., 34, 18 (2001)
  4. Matejka L, Houtoman C, Macosko CW, J. Appl. Polym. Sci., 30, 2787 (1985)
  5. Ng H, Manaszloczower I, Shmorhun M, Polym. Eng. Sci., 34(11), 921 (1994)
  6. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S, Nature, 409(6822), 794 (2001)
  7. Davidson TA, Wagener KB, J. Mol. Catal. A-Chem., 133, 67 (1998)
  8. Dragutan V, Balaban AT, Dimonie M, Olefin Metathesis and Ring Opening Polymerization of Cyclo-olefins, Wiley-Interscience, New York, 1985. (1985)
  9. Kelsey DR, Chuah HH, Ellison RH, Handlin DL, Scardino BM, J. Polym. Sci. A: Polym. Chem., 35(14), 3049 (1997)
  10. Khoury PR, Goddard JD, Tam W, Tetrahedron, 60, 8103 (2004)
  11. Bell A, Catalysis in Polymer Synthesis, ACS Symp. Ser., American Chemical Society, Washington DC, 1992. (1992)
  12. Fisher RA, Grubbs RH, Makromol. Chem.-Macromol. Symp., 63, 271 (1992)
  13. Ivin KJ, Mol JC, Olefin Metathesis and Metathesis Polymerization, Academic Press, San Diego, CA, 1997. (1997)
  14. Hayano S, Kurakata H, Tsunogae Y, Nakayama Y, Sato Y, Yasuda H, Macromolecules, 36(20), 7422 (2003)
  15. Oskam JH, Fox HH, Yap KB, McConville DH, O'Dell R, Lichtenstein BJ, Schrock RR, J. Organomet. Chem., 459, 185 (1993)
  16. Schrodi Y, Pederson RL, Aldrichim. Acta, 40, 45 (2007)
  17. Wilson GO, Porter KA, Weissman H, White SR, Sottos NR, Moore JS, Adv. Synth. Catal., 351, 1817 (2009)
  18. Schwab P, Grubbs RH, Ziller JW, J. Am. Chem. Soc., 118(1), 100 (1996)
  19. Sheng X, Lee JK, Kessler MR, Polymer, 50(5), 1264 (2009)
  20. Liu X, Lee JK, Yoon SH, Kessler MR, J. Appl. Polym. Sci., 101(3), 1266 (2006)
  21. Lee JK, Liu X, Yoon SH, Kessler MR, J. Polym. Sci. B: Polym. Phys., 45(14), 1771 (2007)
  22. Huang GC, Lee JK, Kessler MR, Macromol. Mater. Eng., 296, 965 (2011)
  23. Jones AS, Rule JD, Moore JS, White SR, Sottos NR, Chem. Mater., 18, 1312 (2006)
  24. Wilson GO, Caruso MM, Reimer NT, White SR, Sottos NR, Moore JS, Chem. Mater., 20, 3288 (2008)
  25. Yang G, Lee JK, Ind. Eng. Chem. Res., 53(8), 3001 (2014)
  26. Oleinik EF, Adv. Polym. Sci., 80, 49 (1986)
  27. Jeong W, Kessler MR, Carbon, 47, 2406 (2009)