Polymer(Korea), Vol.39, No.3, 506-513, May, 2015
Ethylidene Norbornene/endo-Dicyclopentadiene 블렌드의 경화 거동 및 인장 특성
Cure Behavior and Tensile Properties of Ethylidene Norbornene/endo-Dicyclopentadiene Blends
E-mail:
초록
Ethylidene norbornene(ENB)과 endo-dicyclopentadiene(endo-DCPD) 블렌드를 1st generation과 2nd generation Grubbs 촉매 하에서 ring-opening metathesis polymerization(ROMP)으로 제조하였다. ROMP 과정을 이해하기 위하여 시차주사열분석기(DSC)로 동적 발열거동을 분석하였으며, 반응 후 만능시험기(UTM)로 인장특성을 조사하였다. 반응속도는 endo-DCPD의 양이 적을수록 그리고 2nd generation 촉매 하에서 더 빨라졌다. 또한 endo-DCPD를 첨가 할수록 그리고 1st generation 촉매 시스템에서 인장탄성률과 강도는 더 높은 값을 보였으나 강인성은 감소하였다. 이와 같은 인장특성의 변화를 젤 분율 측정과 파단면 관찰을 통하여 자세히 설명하였다.
Ethylidene norbornene (ENB) and its blends with endo-dicyclopentadiene (endo-DCPD) were prepared and reacted via the ring-opening metathesis polymerization (ROMP) reaction with the 1st and 2nd generation Grubbs' catalysts. Dynamic exothermic behaviors during ROMP and tensile properties after ROMP were evaluated using a differential scanning calorimeter (DSC) and a universal testing machine (UTM) for the samples, respectively. It revealed that the ROMP rate was accelerated with the less contents of endo-DCPD and under the 2nd generation catalyst. Also, the addition of endo-DCPD and the 1st generation catalyst resulted in higher tensile modulus and strength but lower toughness. Gel fraction measurement and fracture surface observation were made to understand the tensile properties.
- Buchmeiser MR, Chem. Rev., 100(4), 1565 (2000)
- Weck M, Jackiw JJ, Rossi RR, Weiss PS, Grubbs RH, J. Am. Chem. Soc., 121(16), 4088 (1999)
- Trnka TM, Grubbs RH, Acc. Chem. Res., 34, 18 (2001)
- Matejka L, Houtoman C, Macosko CW, J. Appl. Polym. Sci., 30, 2787 (1985)
- Ng H, Manaszloczower I, Shmorhun M, Polym. Eng. Sci., 34(11), 921 (1994)
- White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S, Nature, 409(6822), 794 (2001)
- Davidson TA, Wagener KB, J. Mol. Catal. A-Chem., 133, 67 (1998)
- Dragutan V, Balaban AT, Dimonie M, Olefin Metathesis and Ring Opening Polymerization of Cyclo-olefins, Wiley-Interscience, New York, 1985. (1985)
- Kelsey DR, Chuah HH, Ellison RH, Handlin DL, Scardino BM, J. Polym. Sci. A: Polym. Chem., 35(14), 3049 (1997)
- Khoury PR, Goddard JD, Tam W, Tetrahedron, 60, 8103 (2004)
- Bell A, Catalysis in Polymer Synthesis, ACS Symp. Ser., American Chemical Society, Washington DC, 1992. (1992)
- Fisher RA, Grubbs RH, Makromol. Chem.-Macromol. Symp., 63, 271 (1992)
- Ivin KJ, Mol JC, Olefin Metathesis and Metathesis Polymerization, Academic Press, San Diego, CA, 1997. (1997)
- Hayano S, Kurakata H, Tsunogae Y, Nakayama Y, Sato Y, Yasuda H, Macromolecules, 36(20), 7422 (2003)
- Oskam JH, Fox HH, Yap KB, McConville DH, O'Dell R, Lichtenstein BJ, Schrock RR, J. Organomet. Chem., 459, 185 (1993)
- Schrodi Y, Pederson RL, Aldrichim. Acta, 40, 45 (2007)
- Wilson GO, Porter KA, Weissman H, White SR, Sottos NR, Moore JS, Adv. Synth. Catal., 351, 1817 (2009)
- Schwab P, Grubbs RH, Ziller JW, J. Am. Chem. Soc., 118(1), 100 (1996)
- Sheng X, Lee JK, Kessler MR, Polymer, 50(5), 1264 (2009)
- Liu X, Lee JK, Yoon SH, Kessler MR, J. Appl. Polym. Sci., 101(3), 1266 (2006)
- Lee JK, Liu X, Yoon SH, Kessler MR, J. Polym. Sci. B: Polym. Phys., 45(14), 1771 (2007)
- Huang GC, Lee JK, Kessler MR, Macromol. Mater. Eng., 296, 965 (2011)
- Jones AS, Rule JD, Moore JS, White SR, Sottos NR, Chem. Mater., 18, 1312 (2006)
- Wilson GO, Caruso MM, Reimer NT, White SR, Sottos NR, Moore JS, Chem. Mater., 20, 3288 (2008)
- Yang G, Lee JK, Ind. Eng. Chem. Res., 53(8), 3001 (2014)
- Oleinik EF, Adv. Polym. Sci., 80, 49 (1986)
- Jeong W, Kessler MR, Carbon, 47, 2406 (2009)