화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.1, 37-42, January, 2015
Effect of Sintering Temperature on Microstructure, Electrical and Dielectric Properties of (V, Mn, Co, Dy, Bi)-Codoped Zinc Oxide Ceramics
E-mail:
The effect of sintering temperature on the microstructure, electrical and dielectric properties of (V, Mn, Co, Dy, Bi)- codoped zinc oxide ceramics was investigated in this study. An increase in the sintering temperature increased the average grain size from 4.7 to 10.4 μm and decreased the sintered density from 5.47 to 5.37 g/cm3. As the sintering temperature increased, the breakdown field decreased greatly from 6027 to 1659 V/cm. The ceramics sintered at 900 oC were characterized by the highest nonlinear coefficient (36.2) and the lowest low leakage current density (36.4 μA/cm2). When the sintering temperature increased, the donor concentration of the semiconducting grain increased from 2.49 × 1017 to 6.16 × 1017/cm3, and the density of interface state increased from 1.34 × 1012 to 1.99 × 1012/cm2. The dielectric constant increased greatly from 412.3 to 1234.8 with increasing sintering temperature.
  1. Mahan GD, J. Appl. Phys., 54(7), 3832 (1983)
  2. Matsuoka M, Jpn. J. Appl. Phys., 10(6), 736 (1971)
  3. Levinson LM, Philipp HR, Am. Ceram. Soc. Bull., 65(4), 639 (1986)
  4. Gupta TK, J. Am. Ceram. Soc., 73(7), 1817 (1990)
  5. Mukae K, Am. Ceram. Soc. Bull., 66(10), 1329 (1987)
  6. Mukae K, Tsuda K, Shiga S, IEEE Trans. Power Deliv., 3(2), 591 (1988)
  7. Mukae K, Tsuda K, Nagasawa I, Jpn. J. Appl. Phys., 16, 1361 (1977)
  8. Nahm CW, Mater. Lett., 47(3), 182 (2001)
  9. Tsai JK, Wu TB, J. Appl. Phys., 76(8), 4817 (1994)
  10. Tsai JK, Wu TB, Mater. Lett., 26(3), 199 (1996)
  11. Kuo CT, Chen CS, Lin IN, J. Am. Ceram. Soc., 81(11), 2949 (1998)
  12. Hng HH, Knowles KM, J. Am. Ceram. Soc., 83(10), 2455 (2000)
  13. Hng HH, Chan PL, Mater. Chem. Phys., 75(1-3), 61 (2002)
  14. Hng HH, Chan PL, Ceram. Int., 30, 1647 (2004)
  15. Nahm CW, J. Mater. Sci., 42(19), 8370 (2007)
  16. Nahm CW, Ceram. Int., 35(8), 3435 (2009)
  17. Nahm CW, Ceram. Int., 36(3), 1109 (2010)
  18. Nahm CW, J. Alloy. Compd., 509(34), L314 (2011)
  19. Nahm CW, J. Mater. Sci. -Mater. Med., 24(1), 27 (2013)
  20. Nahm CW, J. Mater. Sci. -Mater. Med., 24(1), 70 (2013)
  21. Nahm CW, Mater. Sci. Semicond. Process, 16(5), 1308 (2013)
  22. Wurst JC, Nelson JA, J. Am. Ceram. Soc., 55(97-12), 109 (1972)
  23. Mukae M, Tsuda K, Nagasawa I, J. Appl. Phys., 50(6), 4475 (1979)